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* The mean structure of the cloud layer in Jupiter's atmosphere 1s
thought to be maintained by the statistical contribution of a large
number of clouds driven by internal and radiative heating/cooling
over multiple cloud life cycles.

 However, the mean structure and its relationship to cloud
convection has not been clarified yet.

— The thick visible clouds prevent the vertical structure of the entire
cloud layer to be observed by remote sensing.

— G@alileo probe’s entry site 1s one of hot spots which are cloudless
region.

— Several cloud resolving models are developed, but most of the
models have been used to simulate an onset and 1nitial

expanding phase of a single cloud under a simplified and
aI‘bItI’a 1n1tlal COHdlthIl i.e., Yair et al., 1992, 1995; Hueso and Sanchez-Lavega, 2001).
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* The mean vertical profiles of the
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* But, Atmospheric dynamics and 10~ 107 107 107 107 107
cloud physical processes would Fig. Vertical structure of Jupiter’s cloud
modify the features obtained by obtained by the equilibrium cloud
ECCM condensation model (Atreya et al, 1999).
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Toward a direct simulation DQ
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* We have been developing two-dimensional numerical models of
cloud convection that incorporates phase change and cloud
microphysics in order to investigate the average structure of the
cloud layer that 1s established through a large number of life
cycles of convective clouds.

— Nakajima et al. (2000) [consider H,O only]
— Sugiyama et al. (2009) [consider three condensible species]

t = 10304000.0 s

Fig: The preliminary results of numerical

(a) Claud Mixing Ratio [kq/kql i (b) VertEcaI Veloclity [m/s].
i A, simulation by Sugiyama et al. (2009).
MR 5 b : Distribution of cloud mixing ratio (left)
: s 18% and vertical velocity (right).
. “ o) " {§= The mixing ratios of H,O ice, NH,SH ice, and
R NH; ice are represented using red, green, and

blue color tones, respectively, and that of
multiple composition cloud is represented by a
superposed plot of the three colors.
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* In order to investigate idealistic characteristics of convective
motion and mean vertical structure of the cloud layer,
we perform a long-time numerical simulation of a two-
dimensional cloud convection model.
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* Two-dimensional numerical fluid model based on the quasi-
compressible system (Klemp and Wilhelmson, 1978)

— The system consists of the equations of motion, continuity and
thermodynamic and conservation equations of condensible species.

« Radiation transfer process: Thermal forcing given as a substitute for
radiative cooling.

* Cloud microphysics process: The parameterization schemes of Kessler
(1969) that 1s well-used in Earth’s atmospheric simulation 1is used.

(a) H,O condensation (b) NH; condensation (c) NH,SH reaction
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* Boundary conditions

* Horizontal boundary is

1024 km  (Ax =2 km)
- cyclic. Stress free condition

A

t 300km
_ and
Sl 200km |0-1Par (tropopouse) :
< . A w = 0 are given at the lower
il sl coolng and upper boundaries
N (0.6 bar) layer cloud layer pp '
3 140km| 2 bar ..
c v e Temperature and mixing
X 4 ratios of vapor at the lowest
o
o sub-cloud level
H,S [NH, [H,0 layer are fixed.
v 7=490 K 30 bar ¥ L »
N . o . e Initial condition
Initial potential Initial mixing ratios
temperature (6) (1 x golar) « Random potential

temperature perturbation
(AO_.. = 0.1 K) is given to

max

seed convective motion.
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= 849,07 day
(a) Vertical velocity [m/s] {b) Virtual potential temperature deviation [K]
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* The convective activity of the whole layer 1s not steady but
quasi-periodic with a period of about 40~50 days.

a) Mixing ratio of condensed components

e Overall temperature of the o
cloud layer synchronizes w1th
the intermittent convective
activity.
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|
8 o
Height [km]

|
[=]
[=]

810 a20 a3a 840 asa

b) Virtual temperature deviation

occurs as "active period' (A) ;o oz I
aIld the OthCI‘ das ‘qulet % 5.0 50 _-E, 0272
. i1 ; £ 0.179
pCI’IOd, (Q). o —100 8.586-2
20.0 ~7.1e-3

a1a 820 aio 844 850

Time [day]
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(a) t = 815.51 day

° At the beglnnlng Of thls qulet . (a1) Cloud Mixing Ratio (a4) Mean Cloud Mixing Ratio [kg/kg]

period, the NH;, clouds are ;Ez _ ]
distributed horizontally. oo
— Vertical motion 1s weak e e e T

(a2) Vapor Mixing Ratio [kg/kg]l {a5) Mean Vapor Mixing Ratio [kg/kgl

(w=~5m/s)

* The vertical motion in the | i H
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(b) t = 828.70 day

( AS time progreSS, NH4SH o {b1) Cloud Mixing Ratio (b4) Melc:xlr? IC!?HdI Il\ﬂlil)‘ci?gull?‘altilo”!:kg/kg]
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(c) t = 835.88 day
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Characteristic of vertical motion DQ
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(c) t = 835.88 day
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Active period: over view PQ
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(d) t = 855.79 day
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(d) t = 855.79 day

* H,O condensation level acts ., (1) ot Wbing Rt (64 Nean o Ming it g/
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Mean structure: condensed components DQ
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» Horizontal mean profiles averaged over several cycles including
active and quiet periods are shown.

* Considerable amounts of H,O and NH,SH cloud particles are
observed above the NH; condensation.
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PN R B B R R | ] LI L L T ]
a5 > ¢ q
T 10 e - 4 o0
e - - — O [ ] r—
© 2.0 == RN : ] g
=5 = * _.. - -—
@ 5ot_ = 1 90 §
- | | 2
100 F . 1
— NH, solid: mean - - -1a0
ool NH,SH broken: active period : :
_. H.IZO R daShefl qulet. perlOd , g ] N BT BT TP R BT B { -1s0

10—". . “1}3-7 1{]-' 10-8 “1.;]-410-“ 2 I 5 10-: 2 I 5 I1“O”- 0 4 8 12 16 20 24 28
{x10-%)
Mixing ratio [kg/kg] Static stability [1/s/s]



Mean structure: Condensible gases DQ
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* The mixing ratios of NH; and H,S start to decrease with height
not at their respective condensation levels but at the H,O
condensation level.

* The characteristics are not the same as that of the previous
thermodynamical equilibrium calculations (ECCM).

— Vertical mixing of dry and condensible during the active periods.
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Mean structure: stability PQ
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e There 1s a distinct maximum of N2 (the square of buoyancy frequency, N) at
the H,O LCL, which explains why the level acts as both a
compositional and a dynamical boundary.

— caused mainly by the change of mean molecular weight
« Weaker peaks are also present at the NH; and NH,SH LCLs,

which seem to act as dynamic and compositional boundaries to a
certain extent during the quiet periods.
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* We perform a long-term numerical simulation with fixed
thermal forcing

 The characteristics

— Active cloud convection occurs intermittently.

— The H,O condensation level acts as a steady kinematic and
compositional boundary.

— The mean vertical distribution of clouds and condensible volatiles
are distinctly different from those predicted by one-dimensional
thermodynamical equilibrium calculations.

* Considerable amounts of H,O and NH,SH cloud particles are
observed above the NH, condensation.

« The mixing ratios of all the volatiles start to decrease with height at

H,O condensation level.




