NetCDF User’'s Guide for C

An Access Interface for Self-Describing, Portable Data
Version 3
June 1997

Russ Rew, Glenn Davis, Steve Emmerson, and Harvey Davies
Unidata Program Center

Copyright © 1997 University Corporation for Atmospheric Research, Boulder, Colorado.

Permission is granted to make and distribute verbatim copies of this manual provided that the
copyright notice and these paragraphs are preserved on all copies. The software and any accompa-
nying written materials are provided “as is” without warranty of any kind. UCAR expressly dis-
claims all warranties of any kind, either expressed or implied, including but not limited to the
implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation. Any opinions, findings, conclu-
sions, or recommendations expressed in this publication are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an endorse-
ment by the Unidata Program Center. Unidata does not authorize any use of information from this
publication for advertising or publicity purposes.

Foreword

Unidata (ttp://www.unidata.ucar.edu) is a National Science Foundation-sponsored program
empowering U.S. universities, through innovative applications of computers and networks, to

make the best use of atmospheric and related data for enhancing education and research. For ana-
lyzing and displaying such data, the Unidata Program Center offers universities several supported
software packages developed by other organizations, including the University of Wisconsin, Pur-
due University, NASA, and the National Weather Service. Underlying these is a Unidata-devel-
oped system for acquiring and managing data in real time, making practical the Unidata principle
that each university should acquire and manage its own data holdings as local requirements dic-
tate. It is significant that the Unidata program has no data center—the management of data is a
“distributed” function.

The Network Common Data Form (netCDF) software described in this guide was originally
intended to provide a common data access method for the various Unidata applications. These
deal with a variety of data types that encompass single-point observations, time series, regularly-
spaced grids, and satellite or radar images.

The netCDF software functions as an I/O library, callable from C, FORTRAN, C++, Perl, or other
language for which a netCDF library is available. The library stores and retrieves data in self-
describing, machine-independent datasets. Each netCDF dataset can contain multidimensional,
named variables (with differing types that include integers, reals, characters, bytes, etc.), and each
variable may be accompanied by ancillary data, such as units of measure or descriptive text. The
interface includes a method for appending data to existing netCDF datasets in prescribed ways,
functionality that is not unlike a (fixed length) record structure. However, the netCDF library also
allows direct-access storage and retrieval of data by variable name and index and therefore is use-
ful only for disk-resident (or memory-resident) datasets.

NetCDF access has been implemented in about half of Unidata’s software, so far, and it is planned
that such commonality will extend across all Unidata applications in order to:

» Facilitate the use of common datasets by distinct applications.

* Permit datasets to be transported between or shared by dissimilar computers transparently,
i.e., without translation.

* Reduce the programming effort usually spent interpreting formats.

* Reduce errors arising from misinterpreting data and ancillary data.

» Facilitate using output from one application as input to another.

» Establish an interface standard which simplifies the inclusion of new software into the Unidata
system.

A measure of success has been achieved. NetCDF is now in use on computing platforms that
range from CRAYSs to personal computers and include most UNIX-based workstations. It can be
used to create a complex dataset on one computer (say in FORTRAN) and retrieve that same self-
describing dataset on another computer (say in C) without intermediate translations—netCDF
datasets can be transferred across a network, or they can be accessed remotely using a suitable
network file system.

Because we believe that the use of netCDF access in non-Unidata software will benefit Unidata’s
primary constituency—such use may result in more options for analyzing and displaying Unidata
information—the netCDF library is distributed without licensing or other significant restrictions,
and current versions can be obtained via anonymous FTP. Apparently the software has been well
received by a wide range of institutions beyond the atmospheric science community, and a sub-
stantial number of public domain and commercial data analysis systems can now accept netCDF
datasets as input.

Several organizations have adopted netCDF as a data access standard, and there is an effort under-
way at the National Center for Supercomputer Applications (NCSA, which is associated with the
University of lllinois at Urbana-Champaign) to support the netCDF programming interfaces as a
means to store and retrieve data in “HDF files,” i.e., in the format used by the popular NCSA

tools. We have encouraged and cooperated with these efforts.

Questions occasionally arise about the level of support provided for the netCDF software. Uni-
data’s formal position, stated in the copyright notice which accompanies the netCDF library, is
that the software is provided “as is”. In practice, the software is updated from time to time, and
Unidata intends to continue making improvements for the foreseeable future. Because Unidata’s
mission is to serve geoscientists at U.S. universities, problems reported by that community neces-
sarily receive the greatest attention.

We hope the reader will find the software useful and will give us feedback on its application as
well as suggestions for its improvement.

David Fulker
Unidata Program Center Director

University Corporation for Atmospheric Research

Summary

The purpose of the Network Common Data Form (netCDF) interface is to allow you to create,
access, and share array-oriented data in a form that is self-describing and portable. “Self-describ-
ing” means that a dataset includes information defining the data it contains. “Portable” means that
the data in a dataset is represented in a form that can be accessed by computers with different
ways of storing integers, characters, and floating-point numbers. Using the netCDF interface for
creating new datasets makes the data portable. Using the netCDF interface in software for data
access, management, analysis, and display can make the software more generally useful.

The netCDF software includes C and FORTRAN interfaces for accessing netCDF data. These
libraries are available for many common computing platforms.

C++ and Perl interfaces for netCDF data access are also available from Unidata. The community
of netCDF users has contributed ports of the software to additional platforms and interfaces for
other programming languages as well. Source code for netCDF software libraries is freely avail-
able to encourage the sharing of both array-oriented data and the software that makes the data use-
ful.

This User’s Guide presents the netCDF data model, but documents only the C interface. Separate
documents are available for the other language interfaces; alg@se@CDF World Wide Web

site , http://www.unidata.ucar.edu/packages/netcdf/ for links to on-line versions of the

C, FORTRAN, C++ and Perl documentation. Reference documentation for UNIX systems, in the
form of UNIX ‘man’ pages for the C and FORTRAN interfaces is also available there. Extensive
additional information about netCDF, including pointers to other software that works with

netCDF data, is available from the netCDF World Wide Web site.

1 Introduction

1.1 The NetCDF Interface

The Network Common Data Form, or netCDF, is an interface to a library of data access functions
for storing and retrieving data in the form of arrays. &may is an n-dimensional (where nis 0, 1,

2, ...) rectangular structure containing items which all have the shateetype(e.g., 8-bit charac-

ter, 32-bit integer). Acalar (simple single value) is a 0-dimensional array.

NetCDF is an abstraction that supports a view of data as a collection of self-describing, portable
objects that can be accessed through a simple interface. Array values may be accessed directly,
without knowing details of how the data are stored. Auxiliary information about the data, such as
what units are used, may be stored with the data. Generic utilities and application programs can
access netCDF datasets and transform, combine, analyze, or display specified fields of the data.
The development of such applications may lead to improved accessibility of data and improved
reusability of software for array-oriented data management, analysis, and display.

The netCDF software implements abstract data typewhich means that all operations to access

and manipulate data in a netCDF dataset must use only the set of functions provided by the inter-
face. The representation of the data is hidden from applications that use the interface, so that how

the data are stored could be changed without affecting existing programs. The physical represen-
tation of netCDF data is designed to be independent of the computer on which the data were writ-

ten.

Unidata supports the netCDF interfaces for C, FORTRAN, C++, and Perl and for various UNIX
operating systems. The software is also ported and tested on a few other operating systems, with
assistance from users with access to these systems, before each major release. Unidata’s netCDF
software is freely available via FTP to encourage its widespread use.

1.2 NetCDF Is Not a Database Management System

Why not use an existing database management system for storing array-oriented data? Relational
database software is not suitable for the kinds of data access supported by the netCDF interface.

First, existing database systems that support the relational model do not support multidimensional
objects (arrays) as a basic unit of data access. Representing arrays as relations makes some useful
kinds of data access awkward and provides little support for the abstractions of multidimensional
data and coordinate systems. A quite different data model is needed for array-oriented data to
facilitate its retrieval, modification, mathematical manipulation and visualization.

Related to this is a second problem with general-purpose database systems: their poor perfor-
mance on large arrays. Collections of satellite images, scientific model outputs and long-term glo-
bal weather observations are beyond the capabilities of most database systems to organize and
index for efficient retrieval.

Finally, general-purpose database systems provide, at significant cost in terms of both resources
and access performance, many facilities that are not needed in the analysis, management, and dis-
play of array-oriented data. For example, elaborate update facilities, audit trails, report formatting,
and mechanisms designed for transaction-processing are unnecessary for most scientific applica-
tions.

1.3 File Format

To achieve network-transparency (machine-independence), netCDF is implemented in terms of an
external representation much like XDR (eXternal Data Representaticip;:g&snter-
nic.net/rfc/rfc1832.txt), a standard for describing and encoding data. This representation
provides encoding of data into machine-independent sequences of bits. It has been implemented
on a wide variety of computers, by assuming only that eight-bit bytes can be encoded and decoded
in a consistent way. The IEEE 754 floating-point standard is used for floating-point data represen-
tation.

The overall structure of netCDF files is described in Chapter 9 “NetCDF File Structure and Per-
formance,” page 131.

The details of the format are described in Appendix B “File Format Specification,” page 151.
However, users are discouraged from using the format specification to develop independent low-
level software for reading and writing netCDF files, because this could lead to compatibility prob-
lems if the format is ever modified.

1.4 What about Performance?

One of the goals of netCDF is to support efficient access to small subsets of large datasets. To sup-
port this goal, netCDF uses direct access rather than sequential access. This can be much more
efficient when the order in which data is read is different from the order in which it was written, or
when it must be read in different orders for different applications.

The amount of overhead for a portable external representation depends on many factors, including
the data type, the type of computer, the granularity of data access, and how well the implementa-
tion has been tuned to the computer on which it is run. This overhead is typically small in compar-
ison to the overall resources used by an application. In any case, the overhead of the external
representation layer is usually a reasonable price to pay for portable data access.

Although efficiency of data access has been an important concern in designing and implementing
netCDF, it is still possible to use the netCDF interface to access data in inefficient ways: for exam-
ple, by requesting a slice of data that requires a single value from each record. Advice on how to
use the interface efficiently is provided in Chapter 9 “NetCDF File Structure and Performance,”
page 131.

1.5 Is NetCDF a Good Archive Format?

NetCDF can be used as a general-purpose archive format for storing arrays. Compression of data
is possible with netCDF (e.g., using arrays of eight-bit or 16-bit integers to encode low-resolution
floating-point numbers instead of arrays of 32-bit numbers), but the current version of netCDF
was not designed to achieve optimal compression of data. Hence, using netCDF may require more
space than special-purpose archive formats that exploit knowledge of particular characteristics of
specific datasets.

1.6 Creating Self-Describing Data conforming to Conventions

The mere use of netCDF is not sufficient to make data “self-describing” and meaningful to both
humans and machines. The names of variables and dimensions should be meaningful and con-
form to any relevant conventions. Dimensions should have corresponding coordinate variables
where sensible.

Attributes play a vital role in providing ancillary information. It is important to use all the relevant
standard attributes using the relevant conventions. Section 8.1 “Attribute Conventions,” page 109,
describes reserved attributes (used by the netCDF library) and attribute conventions for generic
application software.

A number of groups have defined their own additional conventions and styles for netCDF data.
Descriptions of these conventions, as well as examples incorporating them can be accessed from
the netCDF Conventions sit@tp://www.unidata.ucar.edu/packages/netcdf/conven-

tions.html

These conventions should be used where suitable. Additional conventions are often needed for
local use. These should be contributed to the above netCDF conventions site if likely to interest
other users in similar areas.

1.7 Background and Evolution of the NetCDF Interface

The development of the netCDF interface began with a modest goal related to Unidata’s needs: to
provide a common interface between Unidata applications and real-time meteorological data.
Since Unidata software was intended to run on multiple hardware platforms with access from
both C and FORTRAN, achieving Unidata’s goals had the potential for providing a package that
was useful in a broader context. By making the package widely available and collaborating with
other organizations with similar needs, we hoped to improve the then current situation in which
software for scientific data access was only rarely reused by others in the same discipline and
almost never reused between disciplines (Fulker, 1988).

Important concepts employed in the netCDF software originated in a paper (Treinish and Gough,
1987) that described data-access software developed at the NASA Goddard National Space Sci-
ence Data Center (NSSDC). The interface provided by this software was called the Common Data
Format (CDF). The NASA CDF was originally developed as a platform-specific FORTRAN

library to support an abstraction for storing arrays.

The NASA CDF package had been used for many different kinds of data in an extensive collec-
tion of applications. It had the virtues of simplicity (only 13 subroutines), independence from
storage format, generality, ability to support logical user views of data, and support for generic
applications.

Unidata held a workshop on CDF in Boulder in August 1987. We proposed exploring the possibil-
ity of collaborating with NASA to extend the CDF FORTRAN interface, to define a C interface,
and to permit the access of data aggregates with a single call, while maintaining compatibility
with the existing NASA interface.

Independently, Dave Raymond at the New Mexico Institute of Mining and Technology had devel-
oped a package of C software for UNIX that supported sequential access to self-describing array-
oriented data and a “pipes and filters” (or “data flow”) approach to processing, analyzing, and dis-
playing the data. This package also used the “Common Data Format” name, later changed to C-
Based Analysis and Display System (CANDIS). Unidata learned of Raymond’s work (Raymond,
1988), and incorporated some of his ideas, such as the use of named dimensions and variables
with differing shapes in a single data object, into the Unidata netCDF interface.

In early 1988, Glenn Davis of Unidata developed a prototype netCDF package in C that was lay-
ered on XDR. This prototype proved that a single-file, XDR-based implementation of the CDF
interface could be achieved at acceptable cost and that the resulting programs could be imple-
mented on both UNIX and VMS systems. However, it also demonstrated that providing a small,
portable, and NASA CDF-compatible FORTRAN interface with the desired generality was not
practical. NASAs CDF and Unidata’s netCDF have since evolved separately, but recent CDF ver-
sions share many characteristics with netCDF.

In early 1988, Joe Fahle of SeaSpace, Inc. (a commercial software development firm in San
Diego, California), a participant in the 1987 Unidata CDF workshop, independently developed a
CDF package in C that extended the NASA CDF interface in several important ways (Fahle,
1989). Like Raymond’s package, the SeaSpace CDF software permitted variables with unrelated
shapes to be included in the same data object and permitted a general form of access to multidi-
mensional arrays. Fahle’s implementation was used at SeaSpace as the intermediate form of stor-
age for a variety of steps in their image-processing system. This interface and format have
subsequently evolved into the Terascan data format.

After studying Fahle’s interface, we concluded that it solved many of the problems we had identi-
fied in trying to stretch the NASA interface to our purposes. In August 1988, we convened a small
workshop to agree on a Unidata netCDF interface, and to resolve remaining open issues. Attend-
ing were Joe Fahle of SeaSpace, Michael Gough of Apple (an author of the NASA CDF soft-
ware), Angel Li of the University of Miami (who had implemented our prototype netCDF

software on VMS and was a potential user), and Unidata systems development staff. Consensus
was reached at the workshop after some further simplifications were discovered. A document
incorporating the results of the workshop into a proposed Unidata netCDF interface specification
was distributed widely for comments before Glenn Davis and Russ Rew implemented the first
version of the software. Comparison with other data-access interfaces and experience using

netCDF are discussed in Rew and Davis (1990a), Rew and Davis (1990b), Jenter and Signell
(1992), and Brown, Folk, Goucher, and Rew (1993).

In October 1991, we announced version 2.0 of the netCDF software distribution. Slight modifica-
tions to the C interface (declaring dimension lengths torge rather thannt) improved the

usability of netCDF on inexpensive platforms such as MS-DOS computers, without requiring
recompilation on other platforms. This change to the interface required no changes to the associ-
ated file format.

Release of netCDF version 2.3 in June 1993 preserved the same file format but added single call
access to records, optimizations for accessing cross-sections involving non-contiguous data, sub-
sampling along specified dimensions (using ‘strides’), accessing non-contiguous data (using
‘mapped array sections’), improvements to the ncdump and ncgen utilities, and an experimental
C++ interface.

In version 2.4, released in February 1996, support was added for new platforms and for the C++
interface, and significant optimizations were implemented for supercomputer architectures.

FAN (File Array Notation), software providing a high-level interface to netCDF data, was made
available in May 1996. The capabilities of the FAN utilities include extracting and manipulating
array data from netCDF datasets, printing selected data from netCDF arrays, copying ASCII data
into netCDF arrays, and performing various operations (sum, mean, max, min, product,...) on
netCDF arrays. More information about FAN is available from the FAN Utilities document,
http://www.unidata.ucar.edu/packages/netcdf/fan_utils.html

1.8 What's New Since the Previous Release?

This Guide documents the January 1997 release of netCDF 3, which preserves the same file for-
mat as earlier versions but includes some major changes from version 2.4:

» complete rewrite of the netCDF library in ANSI C;

* new type-safe C and FORTRAN interfaces;

* automatic type conversion facilities;

» significant changes in the internal architecture, resulting in higher performance and easier
optimization on new platforms;

» support for all netCDF 2 function interfaces, globals variables, and behavior, for backward
compatibility;

» revised documentation; and fixes for reported bugs.

1.9 Limitations of NetCDF

The netCDF data model is widely applicable to data that can be organized into a collection of
named array variables with named attributes, but there are some important limitations to the
model and its implementation in software. Some of these limitations are inherent in the trade-offs
among conflicting requirements that netCDF embodies, but we plan to address other limitations in

the next version of the software.

Currently, netCDF offers a limited number of external numeric data types: 8-, 16-, 32-bit integers,
or 32- or 64-bit floating-point numbers. This limited set of sizes may use file space inefficiently
compared to packing data in bit fields. For example, arrays of 9-bit values must be stored in 16-bit
short integers. Storing arrays of 1- or 2-bit values in 8-bit values is even less optimal.

With the current netCDF file format, no more than 2 gigabytes of data can be stored in a single
netCDF dataset. This limitation is a result of 32-bit offsets currently used for storing positions
within a file.

Another limitation of the current model is that only one unlimited (changeable) dimension is per-
mitted for each netCDF data set. Multiple variables can share an unlimited dimension, but then
they must all grow together. Hence the netCDF model does not permit variables with several
unlimited dimensions or the use of multiple unlimited dimensions in different variables within the
same dataset. Hence variables that have non-rectangular shapes (for example, ragged arrays) can-
not be represented conveniently.

The extent to which data can be completely self-describing is limited: there is always some
assumed context without which sharing and archiving data would be impractical. NetCDF permits
storing meaningful names for variables, dimensions, and attributes; units of measure in a form
that can be used in computations; text strings for attribute values that apply to an entire data set;
and simple kinds of coordinate system information. But for more complex kinds of metadata (for
example, the information necessary to provide accurate georeferencing of data on unusual grids or
from satellite images), it is often necessary to develop conventions.

Specific additions to the netCDF data model might make some of these conventions unnecessary
or allow some forms of metadata to be represented in a uniform and compact way. For example,
adding explicit georeferencing to the netCDF data model would simplify elaborate georeferencing
conventions at the cost of complicating the model. The problem is finding an appropriate trade-off
between the richness of the model and its generality (i.e., its ability to encompass many kinds of
data). A data model tailored to capture the shared context among researchers within one discipline
may not be appropriate for sharing or combining data from multiple disciplines.

The netCDF data model does not support nested data structures such as trees, nested arrays, or
other recursive structures, primarily because the current FORTRAN interface must be able to read
and write any netCDF data set. Through use of indirection and conventions it is possible to repre-
sent some kinds of nested structures, but the result may fall short of the netCDF goal of self-
describing data.

Finally, the current implementation limits concurrent access to a netCDF dataset. One writer and
multiple readers may access data in a single dataset simultaneously, but there is no support for
multiple concurrent writers.

1.10 Future Plans for NetCDF

Currentplans are to add transparent data packing, improved concurrency support, and the ability
to access datasets larger than 2 Gigabytes. Other desirable extensions that may be added, if practi-
cal, include access to data by key or coordinate value, support for efficient structure changes (e.g.,
new variables and attributes), support for pointers to data cross-sections in other datasets, nested
arrays (allowing representation of ragged arrays, trees and other recursive data structures), and
multiple unlimited dimensions.

References

1. Brown, S. A, M. Folk, G. Goucher, and R. Rew, “Software for Portable Scientific Data Man-
agement,Computers in Physic@&merican Institute of Physics, Vol. 7, No. 3, May/June
1993.

2. Davies, H. L., “FAN - An array-oriented query language,” Second Workshop on Database
Issues for Data Visualization (Visualization 1995), Atlanta, Georgia, IEEE, October 1995.

3. Fahle, J.TeraScan Applications Programming InterfazaSpace, San Diego, California,
1989.

4. Fulker, D. W., “The netCDF: Self-Describing, Portable Files---a Basis for ‘Plug-Compatible’
Software Modules Connectable by Network€3SU Workshop on Geophysical Informatics
Moscow, USSR, August 1988.

5. Fulker, D. W.,, “Unidata Strawman for Storing Earth-Referencing D&eyenth International
Conference on Interactive Information and Processing Systems for Meteorology, Oceanogra-
phy, and HydrologyNew Orleans, La., American Meteorology Society, January 1991.

6. Gough, M. L.NSSDC CDF Implementer’s Guide (DEC VAX/VMS) VersionNafional
Space Science Data Center, 88-17, NASA/Goddard Space Flight Center, 1988.

7. Jenter, H. L. and R. P. Signell, “NetCDF: A Freely-Available Software-Solution to Data-
Access Problems for Numerical ModeleBrbceedings of the American Society of Civil
Engineers Conference on Estuarine and Coastal Modeliagpa, Florida, 1992.

8. Raymond, D. J., “A C Language-Based Modular System for Analyzing and Displaying Grid-
ded Numerical DataJournal of Atmospheric and Oceanic Techno)égp01-511, 1988.

9. Rew, R. K. and G. P. Davis, “The Unidata netCDF: Software for Scientific Data Ac&st)’
International Conference on Interactive Information and Processing Systems for Meteorology,
Oceanography, and Hydrologgnaheim, California, American Meteorology Society, Febru-
ary 1990.

10. Rew, R. K. and G. P. Davis, “NetCDF: An Interface for Scientific Data Acdgessjputer
Graphics and ApplicationdEEE, pp. 76-82, July 1990.

11. Rew, R. K. and G. P. Davis, “Unidata’s netCDF Interface for Data Access: Status and Plans,”
Thirteenth International Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrolpgyaheim, California, American Meteorology
Society, February 1997.

12. Treinish, L. A. and M. L. Gough, “A Software Package for the Data Independent Management
of Multi-Dimensional Data,EOS TransactionsAmerican Geophysical Unio68, 633-635,

1987.

2 Components of a NetCDF Dataset

2.1 The NetCDF Data Model

A netCDF dataset contaimsmensionsvariables andattributes which all have both a name and

an ID number by which they are identified. These components can be used together to capture the
meaning of data and relations among data fields in an array-oriented dataset. The netCDF library
allows simultaneous access to multiple netCDF datasets which are identified by dataset ID num-
bers, in addition to ordinary file names.

A netCDF dataset contains a symbol table for variables containing their name, data type, rank
(number of dimensions), dimensions, and starting disk address. Each element is stored at a disk
address which is a linear function of the array indices (subscripts) by which it is identified. Hence,
these indices need not be stored separately (as in a relational database). This provides a fast and
compact storage method.

2.1.1 Naming Conventions

The names of dimensions, variables and attributes consist of arbitrary sequences of alphanumeric
characters (as well as underscoreand hyphen-"’), beginning with a letter or underscore.

(However names commencing with underscore are reserved for system use.) Case is significant in
netCDF names.

2.1.2 network Common Data Form Language (CDL)

We will use a small netCDF example to illustrate the concepts of the netCDF data model. This
includes dimensions, variables, and attributes. The notation used to describe this simple netCDF
object is called CDL (network Common Data form Language), which provides a convenient way
of describing netCDF datasets. The netCDF system includes utilities for producing human-ori-
ented CDL text files from binary netCDF datasets and vice versa.

netcdf example_1 { // example of CDL notation for a netCDF dataset

dimensions: /I dimension names and lengths are declared first
lat = 5, lon = 10, level = 4, time = unlimited;

variables: /[variable types, names, shapes, attributes
float temp(time,level,lat,lon);
temp:long_name = "temperature";
temp:units = "celsius";

float rh(time,lat,lon);
rh:long_name = "relative humidity";
rh:valid_range = 0.0, 1.0; // min and max
int lat(lat), lon(lon), level(level);
lat:units = "degrees_north";
lon:units = "degrees_east";

level:units = "millibars";
short time(time);

time:units = "hours since 1996-1-1";
/I global attributes

:source = "Fictional Model Output";

data: /I optional data assignments
level =1000, 850, 700, 500;
lat =20, 30, 40, 50, 60;
lon =-160,-140,-118,-96,-84,-52,-45,-35,-25,-15;
time =12;
rh =5,2.4,2,.3,.2,.4,5,6,7,

The CDL notation for a netCDF dataset can be generated automatically bynosing, a utility
program described later (see Section 1G&ump,” page 140). Another netCDF utilityicgen ,
generates a netCDF dataset (or optionally C or FORTRAN source code containing calls needed to
produce a netCDF dataset) from CDL input (see Section h@geh ,” page 139).

The CDL notation is simple and largely self-explanatory. It will be explained more fully as we
describe the components of a netCDF dataset. For now, note that CDL statements are terminated
by a semicolon. Spaces, tabs, and newlines can be used freely for readability. Comments in CDL
follow the characters/* ' on any line. A CDL description of a netCDF dataset takes the form

netCDF name{
dimensions: ...
variables: ...
data: ...

}

where thenameis used only as a default in constructing file names bytgen utility. The CDL
description consists of three optional parts, introduced by the keywloidssions |, variables
anddata . NetCDF dimension declarations appear aftediiensions keyword, netCDF vari-
ables and attributes are defined aftenthiables keyword, and variable data assignments
appear after theata keyword.

2.2 Dimensions
A dimension may be used to represent a real physical dimension, for example, time, latitude, lon-
gitude, or height. A dimension might also be used to index other quantities, for example station or

model-run-number.

A netCDF dimension has botmhameand dength A dimension length is an arbitrary positive
integer, except that one dimension in a netCDF dataset can have theslngteD.

Such a dimension is called tbelimited dimensiowr therecord dimensionA variable with an
unlimited dimension can grow to any length along that dimension. The unlimited dimension index

is like a record number in conventional record-oriented files. A netCDF dataset can have at most
one unlimited dimension, but need not have any. If a variable has an unlimited dimension, that
dimension must be the most significant (slowest changing) one. Thus any unlimited dimension
must be the first dimension in a CDL shape and the first dimension in corresponding C array dec-
larations.

CDL dimension declarations may appear on one or more lines following the CDL keyword
dimensions . Multiple dimension declarations on the same line may be separated by commas.
Each declaration is of the formame= length

There are four dimensions in the above examyale; lon , level , andtime . The first three are
assigned fixed lengthsme is assigned the lengtNLIMITED, which means it is thenlimited
dimension.

The basic unit of named data in a netCDF datasetasiable When a variable is defined, its
shapeis specified as a list of dimensions. These dimensions must already exist. The number of
dimensions is called thrank (a.k.a.dimensionality. A scalar variable has rank 0, a vector has
rank 1 and a matrix has rank 2.

It is possible to use the same dimension more than once in specifying a variable shape (but this
was not possible in previous netCDF versions). For exargptelation(instrument,

instrument) could be a matrix giving correlations between measurements using different instru-
ments. But data whose dimensions correspond to those of physical space/time should have a
shape comprising different dimensions, even if some of these have the same length.

2.3 Variables

Variables are used to store the bulk of the data in a netCDF datagatigblerepresents an array

of values of the same type. A scalar value is treated as a 0-dimensional array. A variable has a
name, a data type, and a shape described by its list of dimensions specified when the variable is
created. A variable may also have associated attributes, which may be added, deleted or changed
after the variable is created.

A variable external data type is one of a small set of net@pEsthat have the namesC_BYTE,
NC_CHAR,NC_SHORT, NC_INT,NC_FLOATandNC_DOUBLEN the C interfaceNC_LONGSs a depre-
cated synonym foxC_INT in the C interface.

In the CDL notation, these types are given the simpler names, char , short ,int , float , and
double .real may be used as a synonymfio&t in the CDL notationlong is a deprecated
synonym forint . The exact meaning of each of the types is discussed in Section 3.1 “netCDF
external data types,” page 15.

CDL variable declarations appear after theable keyword in a CDL unit. They have the form

type variable_namé dim_name_1, dim_name_2,);..

for variables with dimensions, or
type variable_name
for scalar variables.

In the above CDL example there are six variables. As discussed below, four of these are coordi-
nate variables. The remaining variables (sometimes qafiedhry variable$, temp andrh , con-

tain what is usually thought of as the data. Each of these variables has the unlimited dimension
time as its first dimension, so they are calledord variablesA variable that is not a record
variable has a fixed length (number of data values) given by the product of its dimension lengths.
The length of a record variable is also the product of its dimension lengths, but in this case the
product is variable because it involves the length of the unlimited dimension, which can vary. The
length of the unlimited dimension is the number of records.

2.3.1 Coordinate Variables

It is legal for a variable to have the same name as a dimension. Such variables have no special
meaning to the netCDF library. However there is a convention that such variables should be
treated in a special way by software using this library.

A variable with the same name as a dimension is callegloadinate variablelt typically defines
a physical coordinate corresponding to that dimension. The above CDL example includes the
coordinate variablelat , lon , level andtime , defined as follows:

int lat(lat), lon(lon), level(level);
short time(time);

data:
level = 1000, 850, 700, 500;
lat =20, 30, 40, 50, 60;
lon =-160,-140,-118,-96,-84,-52,-45,-35,-25,-15;
time =12

These define the latitudes, longitudes, barometric pressures and times corresponding to positions
along these dimensions. Thus there is data at altitudes corresponding to 1000, 850, 700 and 500
millibars; and at latitudes 20, 30, 40, 50 and 60 degrees north. Note that each coordinate variable
is a vector and has a shape consisting of just the dimension with the same name.

A position along a dimension can be specified using@ex This is an integer with a minimum
value of 0 for C programs. Thus the 700 millibar level would have an index value of 2 in the
example above.

If a dimension has a corresponding coordinate variable, then this provides an alternative, and
often more convenient, means of specifying position along it. Current application packages that
make use of coordinate variables commonly assume they are numeric vectors and strictly mono-
tonic (all values are different and either increasing or decreasing).

2.4 Attributes

NetCDFattributesare used to store data about the datai{lary dataor metadatd, similar in

many ways to the information stored in data dictionaries and schema in conventional database
systems. Most attributes provide information about a specific variable. These are identified by the
name (or ID) of that variable, together with the name of the attribute.

Some attributes provide information about the dataset as a whole and argloalédttributes.
These are identified by the attribute name together with a blank variable name (in CDL) or a spe-
cial null “global variable” ID (in C or Fortran).

An attribute has an associated variable (the null “global variable” for a global attribute), a name, a
data type, a length, and a value. The current version treats all attributes as vectors; scalar values
are treated as single-element vectors.

Conventional attribute names should be used where applicable. New names should be as mean-
ingful as possible.

The external type of an attribute is specified when it is created. The types permitted for attributes
are the same as the netCDF external data types for variables. Attributes with the same name for
different variables should sometimes be of different types. For example, the attrilduieax

specifying the maximum valid data value for a variable of typeshould be of typet ,

whereas the attributalid_max for a variable of typeéouble should instead be of typeuble .

Attributes are more dynamic than variables or dimensions; they can be deleted and have their
type, length, and values changed after they are created, whereas the netCDF interface provides no
way to delete a variable or to change its type or shape.

The CDL notation for defining an attribute is
variable _name:attribute_nanwe list_of values
for a variable attribute, or
:attribute_name= list_of values

for a global attribute. The type and length of each attribute are not explicitly declared in CDL;
they are derived from the values assigned to the attribute. All values of an attribute must be of the
same type. The notation used for constant values of the various netCDF types is discussed later
(see Section 10.3 “CDL Notation for Data Constants,” page 138).

In the netCDF example (see Section 2.1.2 “network Common Data Form Language (CDL),”
page 9)units is an attribute for the variabl& that has a 13-character array value
‘degrees_north . And valid_range is an attribute for the variabie that has length 2 and val-
ues 0.0 "and ‘1.0 .

One global attribute-seurce ---is defined for the example netCDF dataset. This is a character
array intended for documenting the data. Actual netCDF datasets might have more global

attributes to document the origin, history, conventions, and other characteristics of the dataset as a
whole.

Most generic applications that process netCDF datasets assume standard attribute conventions
and it is strongly recommended that these be followed unless there are good reasons for not doing
s0. See Section 8.1 “Attribute Conventions,” page 109, for information alpasit , long_name ,

valid_min ,valid_max ,valid_range , scale_factor , add_offset , Fillvalue , and other
conventional attributes.

Attributes may be added to a netCDF dataset long after it is first defined, so you don’t have to
anticipate all potentially useful attributes. However adding new attributes to an existing dataset
can incur the same expense as copying the dataset. See Chapter 9 “NetCDF File Structure and
Performance,” page 131, for a more extensive discussion.

2.5 Differences between Attributes and Variables

In contrast to variables, which are intended for bulk data, attributes are intended for ancillary data,
or information about the data. The total amount of ancillary data associated with a netCDF object,
and stored in its attributes, is typically small enough to be memory-resident. However variables
are often too large to entirely fit in memory and must be split into sections for processing.

Another difference between attributes and variables is that variables may be multidimensional.
Attributes are all either scalars (single-valued) or vectors (a single, fixed dimension).

Variables are created with a name, type, and shape before they are assigned data values, so a vari-
able may exist with no values. The value of an attribute must be specified when it is created, so no
attribute ever exists without a value.

A variable may have attributes, but an attribute cannot have attributes. Attributes assigned to vari-
ables may have the same units as the variable (for exarapleange) or have no units (for
examplescale_factor). If you want to store data that requires units different from those of the
associated variable, it is better to use a variable than an attribute. More generally, if data require
ancillary data to describe them, are multidimensional, require any of the defined netCDF dimen-
sions to index their values, or require a significant amount of storage, that data should be repre-
sented using variables rather than attributes.

3 Data

This chapter discusses the six primitive netCDF external data types, the kinds of data access sup-
ported by the netCDF interface, and how data structures other than arrays may be implemented in
a netCDF dataset.

3.1 netCDF external data types

The external types supported by the netCDF interface are:

char 8-bit characters intended for representing text.

byte 8-bit signed or unsigned integers (see discussion below).
short 16-bit signed integers.

int 32-bit signed integers.

float or real 32-bit IEEE floating-point.

double 64-bit IEEE floating-point.

These types were chosen to provide a reasonably wide range of trade-offs between data precision
and number of bits required for each value. These external data types are independent from what-
ever internal data types are supported by a particular machine and language combination.

These types are called “external”, because they correspond to the portable external representation
for netCDF data. When a program reads external netCDF data into an internal variable, the data is
converted, if necessary, into the specified internal type. Similarly, if you write internal data into a
netCDF variable, this may cause it to be converted to a different external type, if the external type
for the netCDF variable differs from the internal type.

The separation of external and internal types and automatic type conversion have several advan-
tages. You need not be aware of the external type of numeric variables, since automatic conver-
sion to or from any desired numeric type is available. You can use this feature to simplify code, by
making it independent of external types, using a sufficiently wide internal type, e.g., double preci-
sion, for numeric netCDF data of several different external types. Programs need not be changed
to accommodate a change to the external type of a variable.

If conversion to or from an external numeric type is necessary, it is handled by the library. This
automatic conversion and separation of external data representation from internal data types will
become even more important in a future version of netCDF, when new external types will be
added for packed data for which there may be no natural corresponding internal type, for exam-
ple, packed arrays of 11-bit values.

Converting from one numeric type to another may result in an error if the target type is not capa-
ble of representing the converted value. For example, an internal short integer type may not be

able to hold data stored externally as an integer. When accessing an array of values, a range error
is returned if one or more values are out of the range of representable values, but other values are
converted properly.

Note that mere loss of precision in type conversion does not return an error. Thus, if you read dou-
ble precision values into a single-precision floating-point variable, for example, no error results
unless the magnitude of the double precision value exceeds the representable range of single-pre-
cision floating point numbers on your platform. Similarly, if you read a large integer into a float
incapable of representing all the bits of the integer in its mantissa, this loss of precision will not
result in an error. If you want to avoid such precision loss, check the external types of the vari-
ables you access to make sure you use an internal type that has adequate precision.

The names for the primitive external data typsse(, char , short ,int , float oOrreal , and
double) are reserved words in CDL, so the names of variables, dimensions, and attributes must
not be type names.

It is possible to interpredyte data as either signed (-128 to 127) or unsigned (0 to 255). However,
when reading byte data to be converted into other numeric types, it is interpreted as signed.

See Section 2.3 “Variables,” page 11, for the correspondence between netCDF external data types
and the data types of a language.

3.2 Data Access

To access (read or write) netCDF data you specify an open netCDF dataset, a netCDF variable,
and information (e.g., indices) identifying elements of the variable. The name of the access func-
tion corresponds to the internal type of the data. If the internal type has a different representation
from the external type of the variable, a conversion between the internal type and external type
will take place when the data is read or written.

Access to data direct, which means you can access a small subset of data from a large dataset
efficiently, without first accessing all the data that precedes it. Reading and writing data by speci-
fying a variable, instead of a position in a file, makes data access independent of how many other
variables are in the dataset, making programs immune to data format changes that involve adding
more variables to the data.

In the C and FORTRAN interfaces, datasets are not specified by name every time you want to
access data, but instead by a small integer called a dataset ID, obtained when the dataset is first
created or opened.

Similarly, a variable is not specified by name for every data access either, but by a variable ID, a
small integer used to identify each variable in a netCDF dataset.
3.2.1 Forms of Data Access

The netCDF interface supports several forms of direct access to data values in an open netCDF

dataset. We describe each of these forms of access in order of increasing generality:

» access to all elements;

* access to individual elements, specified withnalex vector

* access to array sections, specified witlnaex vectorandcount vector

* access to subsampled array sections, specified witltar vectorcount vectgrandstride
vector, and

* access to mapped array sections, specified withd@x vectorcount vectorstride vector
and anndex mapping vector

The four types of vectoriridex vectorcount vectorstride vectorandindex mapping vectyeach

have one element for each dimension of the variable. Thus, for an n-dimensional variable (rank =
n), n-element vectors are needed. If the variable is a scalar (no dimensions), these vectors are
ignored.

An array sectionis a “slab” or contiguous rectangular block that is specified by two vectors. The
index vectogives the indices of the element in the corner closest to the origimotinevector

gives the lengths of the edges of the slab along each of the variable’s dimensions, in order. The
number of values accessed is the product of these edge lengths.

A subsampled array sectios similar to ararray section except that an additionsiride vector

is used to specify sampling. This vector has an element for each dimension giving the length of
the strides to be taken along that dimension. For example, a stride of 4 means every fourth value
along the corresponding dimension. The total number of values accessed is again the product of
the elements of theount vectar

A mapped array sectiois similar to asubsampled array secti@xcept that an additionaddex
mapping vectoallows one to specify how data values associated with the netCDF variable are
arranged in memory. The offset of each value from the reference location, is given by the sum of
the products of each index (of the imaginary internal array which would be used if there were no
mapping) by the corresponding element of the index mapping vector. The number of values
accessed is the same as feauhsampled array section

The use of mapped array sections is discussed more fully below, but first we present an example
of the more commonly used array-section access.

3.2.2 An Example of Array-Section Access

Assume that in our earlier example of a netCDF dataset (see Section 2.1.2 “network Common
Data Form Language (CDL),” page 9), we wish to read a cross-section of all the datattmihe
variable at one level (say, the second), and assume that there are currently three tieeongs{

ues) in the netCDF dataset. Recall that the dimensions are defined as

lat = 5, lon = 10, level = 4, time = unlimited;

and the variablemp is declared as

float temp(time, level, lat, lon);
in the CDL notation.
A corresponding C variable that holds data for only one level might be declared as

#define LATS 5

#define LONS 10

#define LEVELS 1

#define TIMES 3 [* currently */

float temp[TIMES*LEVELS*LATS*LONS];

to keep the data in a one-dimensional array, or

float temp[TIMES][LEVELS][LATS][LONS];
using a multidimensional array declaration.

To specify the block of data that represents just the second level, all times, all latitudes, and all
longitudes, we need to provide a start index and some edge lengths. The start index should be (O,
1, 0, 0) in C, because we want to start at the beginning of eachtiafetheon , andiat dimen-

sions, but we want to begin at the second value aéthe dimension. The edge lengths should

be (3,1, 5, 10) in C, (since we want to get data for all thiree values, only onével value, all

fivelat values, and all 1®n values. We should expect to get a total of 150 floating-point values
returned (3*L *5* 10), and should provide enough space in our array for this many. The order in
which the data will be returned is with the last dimengion, varying fastest:

temp|0][1][0][0]
temp|[O][1][0][1]
temp|0][1][0][2]
temp|O][1][0][3]

temp(2][1][4][7]
temp(2][1][4][8]
temp(2][1][4][9]

Different dimension orders for the C, FORTRAN, or other language interfaces do not reflect a dif-
ferent order for values stored on the disk, but merely different orders supported by the procedural
interfaces to the languages. In general, it does not matter whether a netCDF dataset is written
using the C, FORTRAN, or another language interface; netCDF datasets written from any sup-
ported language may be read by programs written in other supported languages.

3.2.3 More on General Array Section Access

The use of mapped array sections allows non-trivial relationships between the disk addresses of

variable elements and the addresses where they are stored in memory. For example, a matrix in
memory could be the transpose of that on disk, giving a quite different order of elements. In a reg-
ular array section, the mapping between the disk and memory addresses is trivial: the structure of
the in-memory values (i.e., the dimensional lengths and their order) is identical to that of the array

section. In a mapped array section, howevemdex mapping vectas used to define the map-

ping between indices of netCDF variable elements and their memory addresses.

With mapped array access, the offset (number of array elements) from the origin of a memory-res-

ident array to a particular point is given by theer produc’t of the index mapping vector with

the point’scoordinate offset vectoh point’s coordinate offset vectaives, for each dimension,

the offset from the origin of the containing array to the point.In C, a point’s coordinate offset vec-
tor is the same as its coordinate vector.

The index mapping vector for a regular array section would have—in order from most rapidly
varying dimension to most slowly—a constant 1, the product of that value with the edge length of
the most rapidly varying dimension of the array section, then the product of that value with the
edge length of the next most rapidly varying dimension, and so on. In a mapped array, however,
the correspondence between netCDF variable disk locations and memory locations can be differ-
ent.

For example, the following C definitions

struct vel {
int flags;
float u;
float v;

} vel[NX][NYT;

ptrdiff_t imap[2] = {
sizeof(struct vel),
sizeof(struct vel)*NY

3

whereimap is the index mapping vector, can be used to access the memory-resident values of the
netCDF variablevel(NY,NX) , even though the dimensions are transposed and the data is con-
tained in a 2-D array of structures rather than a 2-D array of floating-point values.

A detailed example of mapped array access is presented in the description of the interfaces for
mapped array access. See Section 7.9 “Write a Mapped Array of Valcigsut_varm_ type
NF_PUT_VARMtype,” page 78.

Note that, although the netCDF abstraction allows the use of subsampled or mapped array-section
access there use is not required. If you do not need these more general forms of access, you may
ignore these capabilities and use single value access or regular array section access instead.

1. Theinner productof two vectors [x0, X1, ..., xn] and [y0, y1, ..., yn] is just xO*y0 +
x1*y1l + ... + Xn*yn.

3.3 Type Conversion

Each netCDF variable has an external type, specified when the variable is first defined. This exter-
nal type determines whether the data is intended for text or numeric values, and if numeric, the
range and precision of numeric values.

If the netCDF external type for a variablecisar , only character data representing text strings can
be written to or read from the variable. No automatic conversion of text data to a different repre-
sentation is supported.

If the type is numeric, however, the netCDF library allows you to access the variable data as a dif-
ferent type and provides automatic conversion between the numeric data in memory and the data
in the netCDF variable. For example, if you write a program that deals with all numeric data as
double-precision floating point values, you can read netCDF data into double-precision arrays
without knowing or caring what the external type of the netCDF variables are. On reading netCDF
data, integers of various sizes and single-precision floating-point values will all be converted to
double-precision, if you use the data access interface for double-precision values. Of course, you
can avoid automatic numeric conversion by using the netCDF interface for a value type that corre-
sponds to the external data type of each netCDF variable, where such value types exist.

The automatic numeric conversions performed by netCDF are easy to understand, because they
behave just like assignment of data of one type to a variable of a different type. For example, if
you read floating-point netCDF data as integers, the result is truncated towards zero, just as it
would be if you assigned a floating-point value to an integer variable. Such truncation is an exam-
ple of the loss of precision that can occur in numeric conversions.

Converting from one numeric type to another may result in an error if the target type is not capa-
ble of representing the converted value. For example, an integer may not be able to hold data
stored externally as an IEEE floating-point number. When accessing an array of values, a range
error is returned if one or more values are out of the range of representable values, but other val-
ues are converted properly.

Note that mere loss of precision in type conversion does not result in an error. For example, if you
read double precision values into an integer, no error results unless the magnitude of the double
precision value exceeds the representable range of integers on your platform. Similarly, if you
read a large integer into a float incapable of representing all the bits of the integer in its mantissa,
this loss of precision will not result in an error. If you want to avoid such precision loss, check the
external types of the variables you access to make sure you use an internal type that has a compat-
ible precision.

Whether a range error occurs in writing a large floating-point value near the boundary of repre-
sentable values may be depend on the platform. The largest floating-point value you can write to a
netCDF float variable is the largest floating-point number representable on your system that is less
than 2 to the 128th power. The largest double precision value you can write to a double variable is
the largest double-precision number representable on your system that is less than 2 to the 1024th
power.

This automatic conversion and separation of external data representation from internal data types
will become even more important in a future version of netCDF, when new external types will be
added for packed data for which there is no natural corresponding internal type, for example,
arrays of 11-bit values.

3.4 Data Structures

The only kind of data structure directly supported by the netCDF abstraction is a collection of
named arrays with attached vector attributes. NetCDF is not particularly well-suited for storing
linked lists, trees, sparse matrices, ragged arrays or other kinds of data structures requiring point-
ers.

It is possible to build other kinds of data structures from sets of arrays by adopting various con-
ventions regarding the use of data in one array as pointers into another array. The netCDF library
won’t provide much help or hindrance with constructing such data structures, but netCDF pro-
vides the mechanisms with which such conventions can be designed.

The following example stores a ragged aregged_mat using an attributeow_index to name
an associated index variable giving the index of the start of each row. In this example, the first row
contains 12 elements, the second row contains 7 elements (19 - 12), and so on.

float ragged_mat(max_elements);
ragged_mat:row_index = "row_start";
int row_start(max_rows);
data:
row_start =0, 12,19, ...

As another example, netCDF variables may be grouped within a netCDF dataset by defining
attributes that list the names of the variables in each group, separated by a conventional delimiter
such as a space or comma. Using a naming convention for attribute names for such groupings per-
mits any number of named groups of variables. A particular conventional attribute for each vari-
able might list the names of the groups of which it is a member. Use of attributes, or variables that
refer to other attributes or variables, provides a flexible mechanism for representing some kinds of
complex structures in netCDF datasets.

4 Use of the NetCDF Library

You can use the netCDF library without knowing about all of the netCDF interface. If you are cre-
ating a netCDF dataset, only a handful of routines are required to define the necessary dimen-
sions, variables, and attributes, and to write the data to the netCDF dataset. (Even less are needed
if you use thencgen utility to create the dataset before running a program using netCDF library
calls to write data.) Similarly, if you are writing software to access data stored in a particular
netCDF object, only a small subset of the netCDF library is required to open the netCDF dataset
and access the data. Authors of generic applications that access arbitrary netCDF datasets need to
be familiar with more of the netCDF library.

In this chapter we provide templates of common sequences of netCDF calls needed for common
uses. For clarity we present only the names of routines; omit declarations and error checking; omit
the type-specific suffixes of routine names for variables and attributes; indent statements that are
typically invoked multiple times; and useto represent arbitrary sequences of other statements.
Full parameter lists are described in later chapters.

4.1 Creating a NetCDF Dataset

Here is a typical sequence of netCDF calls used to create a new netCDF dataset:
nc_create [* create netCDF dataset: enter define mode */
nc_def dim [* define dimensions: from name and length */

nc_def var /* define variables: from name, type, ... */

n(.:._.put_att [* put attribute: assign attribute values */
nc_.é.nddef /* end definitions: leave define mode */

n(.:._.put_var [* provide values for variables */
nc_.(.:.Iose [* close: save new netCDF dataset */

Only one call is needed to create a netCDF dataset, at which point you will be in the first of two
netCDFmodesWhen accessing an open netCDF dataset, it is eitheefine moder data mode

In define mode, you can create dimensions, variables, and new attributes, but you cannot read or
write variable data. In data mode, you can access data and change existing attributes, but you are
not permitted to create new dimensions, variables, or attributes.

One call tonc_def dim is needed for each dimension created. Similarly, one call tdef var
is needed for each variable creation, and one call to a memberaf the att family is needed

for each attribute defined and assigned a value. To leave define mode and enter data mode, call
nc_enddef.

Once in data mode, you can add new data to variables, change old values, and change values of

existing attributes (so long as the attribute changes do not require more storage space). Single val-
ues may be written to a netCDF variable with one of the membersmaf he var1 family,

depending on what type of data you have to write. All the values of a variable may be written at
once with one of the members of the put_var family. Arrays or array cross-sections of a vari-

able may be written using members of theput vara family. Subsampledrray sections may

be written using members of the put_vars family. Mappedarray sections may be written

using members of thec_put_varm family. (Subsampled and mapped access are general forms of
data access that are explained later.)

Finally, you should explicitly close all netCDF datasets that have been opened for writing by call-
ing nc_close. By default, access to the file system is buffered by the netCDF library. If a pro-
gram terminates abnormally with netCDF datasets open for writing, your most recent
modifications may be lost. This default buffering of data is disabled by setting the NC_SHARE
flag when opening the dataset. But even if this flag is set, changes to attribute values or changes
made in define mode are not written out umtilsync or nc_close is called.

4.2 Reading a NetCDF Dataset with Known Names

Here we consider the case where you know the nhames of not only the netCDF datasets, but also
the names of their dimensions, variables, and attributes. (Otherwise you would have to do
“inquire” calls.) The order of typical C calls to read data from those variables in a netCDF dataset
is:

nc_open [* open existing netCDF dataset */
nc_ing_dimid /* get dimension IDs */

nc_ing_varid [* get variable IDs */

nc_get_att [* get attribute values */
nc_get var /* get values of variables */
nc_close * close netCDF dataset */

First, a single call opens the netCDF dataset, given the dataset name, and returns a netCDF ID that
is used to refer to the open netCDF dataset in all subsequent calls.

Next, a call tanc_ing_dimid for each dimension of interest gets the dimension ID from the
dimension name. Similarly, each required variable ID is determined from its name by a call to
nc_ing_varid Once variable IDs are known, variable attribute values can be retrieved using the
netCDF ID, the variable ID, and the desired attribute name as input to a member of the
nc_get_att family (typically nc_get_att_text ornc_get_att_double) for each desired
attribute. Variable data values can be directly accessed from the netCDF dataset with calls to
members of thac_get_varl family for single values, thec_get_var family for entire vari-

ables, or various other members of tleeget_vara , nc_get_vars , ornc_get varm families for

array, subsampled or mapped access.

Finally, the netCDF dataset is closed withclose. There is no need to close a dataset open
only for reading.

4.3 Reading a netCDF Dataset with Unknown Names

It is possible to write programs (e.g., generic software) which do such things as processing every
variable, without needing to know in advance the names of these variables. Similarly, the names
of dimensions and attributes may be unknown.

Names and other information about netCDF objects may be obtained from netCDF datasets by
calling inquire functions. These return information about a whole netCDF dataset, a dimension, a
variable, or an attribute. The following template illustrates how they are used:

nc_open /* open existing netCDF dataset */
né:inq /* find out what is in it */
n(.:._.inq_dim [* get dimension names, lengths */
n(.:._.inq_var [* get variable names, types, shapes */

nc_ing_atthame /* get attribute names */

n(.:._.inq_att [* get attribute types and lengths */
n(.:._.get_att /* get attribute values */
nc_.g.].et_var [* get values of variables */
nc_.(.:.lose /* close netCDF dataset */

As in the previous example, a single call opens the existing netCDF dataset, returning a netCDF
ID. This netCDF ID is given to the_ing routine, which returns the number of dimensions, the
number of variables, the number of global attributes, and the ID of the unlimited dimension, if
there is one.

All the inquire functions are inexpensive to use and require no I/O, since the information they pro-
vide is stored in memory when a netCDF dataset is first opened.

Dimension IDs use consecutive integers, beginning at 0. Also dimensions, once created, cannot be
deleted. Therefore, knowing the number of dimension IDs in a netCDF dataset means knowing all
the dimension IDs: they are the integers 0, 1, 2, ...up to the number of dimensions. For each
dimension ID, a call to the inquire functian ing_dim returns the dimension name and length.

Variable IDs are also assigned from consecutive integers 0, 1, 2, ... up to the number of variables.
These can be usednn_ing_var calls to find out the names, types, shapes, and the number of
attributes assigned to each variable.

Once the number of attributes for a variable is known, successive callsitq_attname return

the name for each attribute given the netCDF ID, variable ID, and attribute number. Armed with
the attribute name, a call to_ing_att returns its type and length. Given the type and length,
you can allocate enough space to hold the attribute values. Then a call to a member of the
nc_get_att family returns the attribute values.

Once the IDs and shapes of netCDF variables are known, data values can be accessed by calling a
member of thec_get varl family for single values, or members of theget var,
nc_get_vara, nc_get_vars, ornc_get_varmf or various kinds of array access.

4.4 Adding New Dimensions, Variables, Attributes

An existing netCDF dataset can be extensively altered. New dimensions, variables, and attributes
can be added or existing ones renamed, and existing attributes can be deleted. Existing dimen-
sions, variables, and attributes can be renamed. The following code template lists a typical
sequence of calls to add new netCDF components to an existing dataset:

nc_open [* open existing netCDF dataset */
nc_redef /* put it into define mode */
nc_def _dim [* define additional dimensions (if any) */

nc_def var /* define additional variables (if any) */

né:._.put_att [* define additional attributes (if any) */
nc._.e.nddef /* check definitions, leave define mode */

né:._.put_var /* provide values for new variables */
nc._.(;lose [* close netCDF dataset */

A netCDF dataset is first opened by theopen call. This call puts the open datasetata

mode which means existing data values can be accessed and changed, existing attributes can be
changed (so long as they do not grow), but nothing can be added. To add new netCDF dimensions,
variables, or attributes you must endefine modeby callingnc_redef . In define mode, call

nc_def dim to define new dimensionsg_def var to define new variables, and a member of the
nc_put_att family to assign new attributes to variables or enlarge old attributes.

You can leave define mode and reenter data mode, checking all the new definitions for consistency
and committing the changes to disk, by calliagenddef . If you do not wish to reenter data
mode, just calhc_close , which will have the effect of first calling:_enddef.

Until thenc_enddef call, you may back out of all the redefinitions made in define mode and
restore the previous state of the netCDF dataset by catliagort. You may also use the

nc_abort call to restore the netCDF dataset to a consistent state if the calldoddef fails. If

you have calledc_close from definition mode and the implied callro enddef fails,

nc_abort will automatically be called to close the netCDF dataset and leave it in its previous con-

sistent state (before you entered define mode).

At most one process should have a netCDF dataset open for writing at one time. The library is
designed to provide limited support for multiple concurrent readers with one writer, via disci-
plined use of the nc_sync function and the NC_SHARE flag. If a writer makes changes in define
mode, such as the addition of new variables, dimensions, or attributes, some means external to the
library is necessary to prevent readers from making concurrent accesses and to inform readers to
call nc_sync before the next access.

4.5 Error Handling

The netCDF library provides the facilities needed to handle errors in a flexible way. Each netCDF
function returns an integer status value. If the returned status value indicates an error, you may
handle it in any way desired, from printing an associated error message and exiting to ignoring the
error indication and proceeding (not recommended!). For simplicity, the examples in this guide
check the error status and call a separate function to handle any errors.

Thenc_strerror ~ function is available to convert a returned integer error status into an error mes-
sage string.

Occasionally, low-level 1/0O errors may occur in a layer below the netCDF library. For example, if
a write operation causes you to exceed disk quotas or to attempt to write to a device that is no
longer available, you may get an error from a layer below the netCDF library, but the resulting
write error will still be reflected in the returned status value.

4.6 Compiling and Linking with the NetCDF Library

Details of how to compile and link a program that uses the netCDF C or FORTRAN interfaces
differ, depending on the operating system, the available compilers, and where the netCDF library
and include files are installed. Nevertheless, we provide here examples of how to compile and link
a program that uses the netCDF library on a Unix platform, so that you can adjust these examples
to fit your installation.

Every C file that references netCDF functions or constants must contain an apprapciade
statement before the first such reference:

#include <netcdf.h>

Unless thaenetcdf.h file is installed in a standard directory where the C compiler always looks,
you must use the option when invoking the compiler, to specify a directory whesedf.h is
installed, for example:

cc -c -l/usr/local/netcdf/include myprogram.c

Alternatively, yo