Implementation Martian dust lifting scheme into DCPAM, and a diagnosis experiment of surface dust flux

OGIHARA Hirotaka¹, TAKAHASHI Yoshiyuki O.², ISHIWATARI Masaki¹, ODAKA Masatugu¹, HAYASHI Yoshi-yuki²

1:Graduate School of Science, Hokkaido University 2: Graduate School of Science, Kobe University

Martian dust

- Dust plays a critical role in the thermal and dynamical state of the Martian atmosphere
 - Dust distribution variabilies
 - Seasonal change

TES for Mars year 26 (Kahre et al., 2006)

• Interannual variability : global dust storm

Viking Lander 1 imaging data for Viking year 1(Zurek, 1982)

Modeling of dust processes

- Dust processes which should be implemented
 - lifting processes
 - wind stress lifting
 - dust devil lifting
 - transport processes
 - turbulent mixing
 - advection
 - gravitational sedimentation
 - radiative processes
 - absorption and scattering by dust
- Some research groups have performed the Martian dust cycle experiments with those processes
 - Newman et al., 2002; Basu et al., 2004; Kahre et al., 2006

Result of Kahre et al. (2006)

• One of previous simulation of Martian dust cycle

Model: NASA Ames GCM with dust as a radiatively active tracer

- Result
 - Observed seasonal variation of dust is almost reproduced.
 - Low dust opacity in Northern summer, Increasing dust opacity in Northern winter
 - The atmospheric dust load increase during northen fall and winter

Simulation by Kahre et al. (2006) . Opacity have been scaled to the 6.1 mbar presure level

- Unresolved problem
 - Interannual variability of global dust storms can not be simulated

Aims of this work

- Present state of our model
 - Dust cycle parametarization schemes have not been implemented
- Goal
 - Implementing dust cycle parametarization schemes into DCPAM
 - Numerical experiments on dust variability with dust cycle model
- In this work
 - Implementing a dust lifting scheme(Kahre et al., 2006) into DCPAM
 - diagnosing surface dust flux
 - Radiatively active dust is given, and dust lifting scheme lifts only radiatively inactive dust
 - Comparing our model's results with Kahre et al. (2006)

Model

- DCPAM: general circulation model of planetary atmosphere (http://www.gfd-dennou.org/arch/dcpam/index.htm.en)
 - Dynamical core
 - Three dimentional primitive equation system
 - Radiation
 - Mars radiation model based on Takahashi et al. (2003, 2006)
 - Effects of absorption and scattering by CO₂ and dust are considered
 - Turbulent mixing
 - Mellor and Yamada (1974, 1982) level 2 scheme
 - Bulk formulae based on Louis et al. (1982) is used to estimate surface flux
 - Dry convective adjustment
 - Dry convective adjustment scheme based on Manabe et al. (1965)
 - Surface CO₂ ice phase change process

Wind stress lifting scheme

- KMH scheme (Kahre et al., 2006)
 - Dust lifting scheme by using model resolved near surface wind stress

$$F_d = \alpha R \tau^2 \left(\frac{\tau - \tau^*}{\tau^*} \right)$$

- F_d : vertical dust flux
- $lpha\,$:efficiency factor
- *R* : empirically coefficient
- τ : surface stress
- τ^* : threshold stress required for lifting
- Vertical dust flux is zero, unless surface stress exceeds threshold stress required for lifting
- This scheme is based on that of terrestrial dust lifting
 - Westphal et al., 1987; Haberle et al., 2003

Experimental setup

- Dust distribution for radiative scheme is given
 - Horizontally and temporally uniform
 - The dust optical depth at 0.67 μ m is set to be 0.2
 - Vertical distribution is determined on the based of Pollack et al. (1990) and Forget et al. (1999)
- Surface dust flux is diagnosed
 - parameters of KMH scheme
 - $\alpha = 0.1$
 - $\tau^* = 0.00225 \text{Nm}^{-2}$
 - R = 0.0023
 - Lifted dust are radiatively inactive and not advected

Experimental setup (cont.)

- Surface properties(topography, albedo, thermal inertia)
 - Data observed by Mars Global Serveyor
- Other parameters are those commonly used for Mars simulation
- Resolution
 - T21L32
 - + $5.625^{\circ} \times 5.625^{\circ}$ longitude-latitude grid
 - 32 vertical levels
- Initial state
 - motionless and isothermal(200K) state with small temperature disturbances
- Integration time
 - Three Mars years
 - The last year is used for analysis

Model performance test

- Simulated temperature distribution is similar to observation result
 - northern spring and fall: temperature distribution is equatorially symmetric
 - northern summer and winter: temperature distribution is equatorially asymmetric
 - low tropospheric temperature rapidly decreases from near 40° latitude toward pole in the winter hemisphere

Results of diagnosed surface dust flux

- Season and location of intense dust lifting are similar to Kahre et al. (2006).
 - the edge of polar caps, regions in the southern mid-latitudes
- The order the magnitude of dust flux is larger
 - maximum of daily mean value: 0.026 kg m⁻² s⁻¹(DCPAM), 0.005 kg m⁻² s⁻¹(Kahre et al., 2006)
 - It might be caused by differences in vertical level setting and turbulent mixing scheme

Details of dust lifting near the edge of northern polar caps

- latitude 50°N, $L_s = 210^\circ 240^\circ$ (region "A")
- Dust lifting occurs in low pressure region.
- Pressure variation shows eastward propagating wave-like structure
 - wavenumber 1 and period of 6 Mars days
 - it is considered to be baroclinic wave(Briggs et al., 1979).

X-T diagram at 50°N, color tone indicates surface pressure. The contour indicates dust flux.

Details of dust lifting in the southern mid-latitudinal region

- latitude 30°S, $L_s = 210^\circ 240^\circ$ (region "B")
- Dust lifting occurs at around longitude 80°E (Hellas basin)
 - Onset of dust lifting seems to be triggered propagating high temperature region
- Temperature variation shows westward propagating wave-like structure
 - wavenumber 1 and period of 1 Mars day
 - it is considered to be diurnal thermal tide (Joshi et al., 1997)

Summary

- Implemented wind stress lifting scheme into DCPAM
 - KMH scheme(Kahre et al., 2006)
- Performed a diagnostic experiment of surface dust flux
 - Seasonal variation of dust lifting
 - Our results are similar to those of Kahre et al. (2006)
 - In region at latitude 50°N, $L_s = 210^\circ 240^\circ$
 - Dust lifting occurs in low pressure region. Baroclinic wave ?
 - In region at latitude 30°S, $L_s = 210^\circ 240^\circ$
 - Dust lifting occurs at around longitude 80°E (Hellas basin). Diurnal thermal tide?
- Next step
 - Implementing dust devil lifting scheme, advective scheme and gravitational sedimentation scheme

Ongoing model development: implementation of dust devil lifting scheme

- Implementing dust devil lifting scheme into DCPAM
- Dust devil lifting scheme is a scheme for sub-grid scale
 - This is based on the thermodynamics of dust devils (Renn \acute{o} et al., 1998)

$$F_d = \alpha F_s \eta$$

- F_d : vertical dust flux
- α : efficiency factor
- F_s : vertical sensible heat flux
- η : thermodynamic efficiency

Test experiment for dust devil scheme with 1D model

• We are performing 1 dimentional numerical experiments for dust devil lifting scheme

- Our result is qualitatively similar to Kahre et al. (2006)
 - Peak of dust flux appears at local time 12:00
- The order of magnitude of dust flux is larger
 - Is parameter value used by Kahre et al. (2006) correct ?