Referred articles

  1. Schreck, C. J., F. Vitart, S. J. Camargo, J. Camp, J. Darlow, R. Elsberry, J. Gottschalck, P. Gregory, K. Hansen, J. Jackson, M. Janiga, P. J. Klotzbach, C.-Y. Lee, L. Long, M. Nakano, K. Takemura, Y. Takaya, M. J. Ventrice, Z. Wang, 2023: Advances in Tropical Cyclone Prediction on Subseasonal Time Scales during 2019-2022, Tropical Cyclone Res. Rev., doi:10.1016/j.tcrr.2023.06.004
  2. Nakano, M., Y.-W. Chen, M. Satoh, 2023: Analysis of the Factors that Led to Uncertainty of Track Forecast of Typhoon Krosa (2019) by 101-Member Ensemble Forecast Experiments Using NICAM, J. Meteor. Soc. Jpn.,101, 191-207, doi:10.2151/jmsj.2023-013
  3. Yamada, Y., T. Miyakawa, M. Nakano, C. Kodama, A. Wada, T. Nasuno, Y.-W. Chen, A. Yamazaki, H. Yashiro, M. Satoh, 2023: Large Ensemble Simulation for Investigating Predictability of Precursor Vortices of Typhoon Faxai in 2019 With a 14-km Mesh Global Nonhydrostatic Atmospheric Model, Geophys. Res. Lett., 50, e2022GL100565, doi:10.1029/2022GL100565
  4. Suzuki, T., M. Nakano, S. Watanabe, H. Tatebe, Y. Takano, 2023: Mechanism of a meteorological tsunami reaching the Japanese coast caused by Lamb and Pekeris waves generated by the 2022 Tonga eruption, Ocean Modelling, 181, 102153, doi:10.1016/j.ocemod.2022.102153
  5. Watanabe, S., K. Hamilton, T. Sakazaki, M. Nakano, 2022: First Detection of the Pekeris Internal Global Atmospheric Resonance: Evidence from the 2022 Tonga Eruption and from Global Reanalysis Data J. Atmos. Sci., 79, 3027-3043, doi:10.1175/JAS-D-22-0078.1
  6. Nasuno, T., M. Nakano, H. Murakami, K. Kikuchi, Y. Yamada, 2022: Impacts of midlatitude western North Pacific sea surface temperature anomaly on the subseasonal to seasonal tropical cyclone activity: case study of the 2018 boreal summer, SOLA, 18, 88-95, doi:10.2151/sola.2022-015
  7. Guo, X., N. Zhao, K. Kikuchi, T. Nasuno, M. Nakano, H. Annamalai, 2021: Atmospheric Rivers over the Indo-Pacific and its Associations with Boreal Summer Intraseasonal Oscillation, J. Clim. 34, 9711-9728, doi:10.1175/JCLI-D-21-0290.1
  8. Nakano, M., F. Vitart and K. Kikuchi, 2021: Impact of the boreal summer intraseasonal oscillation on typhoon tracks in the Western North Pacific and the prediction skill of the ECMWF model. Geophys. Res. Lett., 48, e2020GL091505. doi:10.1029/2020GL091505
  9. Shibuya, R., M. Nakano, C. Kodama, T. Nasuno, K. Kikuchi, M. Satoh, H. Miura, and T. Miyakawa, 2021: Prediction skill of the boreal summer intra-seasonal oscillation in global non-hydrostatic atmospheric model simulations with explicit cloud microphysics. J. Meteor. Soc. Japan, 99, 973-992, doi: 10.2151/jmsj.2021-046.
  10. Kodama, C., T. Ohno, T. Seiki, H. Yashiro, A. T. Noda, M. Nakano, Y. Yamada, W. Roh, M. Satoh, T. Nitta, D. Goto, H. Miura, T. Nasuno, T. Miyakawa, Y.-W. Chen & M. Sugi, 2021: The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates, Geosci. Model Dev., 14, 795-820, doi:10.5194/gmd-14-795-2021.
  11. Zhao, N., A. Manda, X. Guo, K. Kikuchi, T. Nasuno, M. Nakano, Y. Zhang, B. Wang, 2021: A Lagrangian view of moisture transport related to the heavy rainfall of July 2020 in Japan: Importance of the moistening over the subtropical regions, Geophys. Res. Lett., doi: 10.1029/2020GL091441
  12. Judt, F., D. Klocke, R. Rios-Berrios, B. Vanniere, F. Ziemen, L. Auger, J. Biercamp, C. Bretherton, X. Chen, P. Duben, C. Hohenegger, M. Khairoutdinov, C. Kodama, L. Kornblueh, S.-J. Lin, M. Nakano, P. Neumann, W. Putman, N. Rober, M. Roberts, M. Satoh, R. Shibuya, B. Stevens, P. L. Vidale, N. Wedi, and L. Zhou, 2021: Tropical cyclones in global storm-resolving models. J. Meteor. Soc. Japan, 99, doi:10.2151/jmsj.2021-029.
  13. Yamada, Y., C. Kodama, M. Satoh, M. Sugi, M. J. Roberts, R. Mizuta, A. T. Noda, T. Nasuno, M. Nakano, P.L. Vidale 2021: Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high-resolution multi-model ensemble simulations, Prog Earth Planet Sci 8, 11. doi:10.1186/s40645-020-00397-1
  14. Tang, B. H., J. Fang, A. Bentley, G. Kilroy, M. Nakano, M.-S. Park, V.P.M. Rajasree, Z. Wang, A. A. Wing, L. Wu, 2020: Recent Advances in Research on Tropical Cyclogenesis, Tropical Cyclone Research and Review, 9, 87-105, doi:10.1016/j.tcrr.2020.04.004
  15. Sugi, M., Y. Yamada, K. Yoshida, R. Mizuta, M. Nakano, C. Kodama, M. Satoh, 2020: Future changes in the global frequency of tropical cyclone seeds, SOLA, 16, 70-74, doi:10.2151/sola.2020-012
  16. Qian, Y., H. Murakami, M. Nakano, P.-C. Hsu, T. L. Delworth, S. B. Kapnick, V. Ramaswamy, T. Mochizuki, Y. Morioka, T. Doi, T. Kataoka, T. Nasuno, K. Yoshida, 2019: On the mechanisms of the active 2018 tropical cyclone season in the North Pacific. Geophysical Research Letters, 46, 12293-12302, doi:10.1029/2019GL084566
  17. Yamada, Y., C. Kodama, M. Satoh, M. Nakano, T. Nasuno, and M. Sugi, 2019: High-resolution Ensemble Simulations of Intense Tropical Cyclones and Their Internal Variability During the El Ninos of 1997 and 2015. Geophys. Res. Lett., 46, 7592-7601, doi:10.1029/2019GL082086
  18. Nakano, M., and K. Kikuchi, 2019: Seasonality of Intraseasonal Variability in Global Climate Models. Geophys. Res. Lett., 46, 4441-4449, doi:10.1029/2019GL082443
  19. Fujita, M., T. Sato, T. J. Yamada, S. Kawazoe, M. Nakano, and K. Ito, 2019: Analyses of extreme precipitation associated with the Kinugawa River flood in September 2015 using a large ensemble downscaling experiment. J. Meteor. Soc. Japan, 97, 387-401, doi:10.2151/jmsj.2019-022
  20. Matsuoka, D., M. Nakano, D. Sugiyama, and S. Uchida, 2018: Deep learning approach for detecting tropical cyclones and their precursors in the simulation by a cloud-resolving global nonhydrostatic atmospheric model. Prog. Earth Planet. Sci., 5:80, doi:10.1186/s40645-018-0245-y
  21. Nakano, M., H. Yashiro, H. Tomita and C. Kodama, 2018: Single Precision in the Dynamical Core of a Nonhydrostatic Global Atmospheric Model: Evaluation Using a Baroclinic Wave Test Case. Mon. Wea. Rev., 146, 409-416, doi:10.1175/MWR-D-17-0257.1
  22. Yamada, Y., M. Satoh, M. Sugi, C. Kodama, A.T. Noda, M. Nakano, and T. Nasuno, 2017: Response of Tropical Cyclone Activity and Structure to Global Warming in a High-Resolution Global Nonhydrostatic Model. J. Clim., 30, 9703-9724, doi:10.1175/JCLI-D-17-0068.1
  23. Nasuno, T., K. Kikuchi, M. Nakano, Y. Yamada, M. Ikeda, and H. Taniguchi, 2017: Evaluation of the Near real-time Forecasts Using a Global Nonhydrostatic Model during the CINDY2011/DYNAMO, J. Meteor. Soc. Jpn, 95, 345-368, doi:10.2151/jmsj.2017-022
  24. Nakano, M, H. Kubota, T. Miyakawa, T. nasuno and M. Satoh, 2017: Genesis of Super Cyclone Pam (2015): Modulation of Low-Frequency Large-Scale Circulations and the Madden-Julian Oscillation by Sea Surface Temperature Anomalies, Mon. Wea. Rev., 145, 3143-3159, doi:10.1175/MWR-D-16-0208.1
  25. Satoh, M., H. Tomita., H. Yashiro, Y. Kajikawa, Y. Miyamoto, T. Yamaura, T. Miyakawa, M. Nakano, C. Kodama, A. T. Noda, T. Nasuno, Y. Yamada, Y. Fukutomi, 2017: Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer, Prog. Earth Planet. Sci., 4, doi:10.1186/s40645-017-0127-8
  26. Nakano, M., A. Wada, M. Sawada, H. Yoshimura, R. Onishi, S. Kawahara, W.Sasaki, T. Nasuno, M. Yamaguchi, T. Iriguchi, M. Sugi, and Y. Takeuchi, 2017: Global 7-km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): Experimental design and preliminary results, Geosci. Model Dev.,10, 1363-1381, doi:10.5194/gmd-10-1363-2017
  27. Kikuchi, K., C. Kodama, T. Nasuno, M. Nakano, H. Miura, M. Satoh, A. T. Noda, Y. Yamada, 2017: Tropical intraseasonal oscillation simulated in an AMIP-type experiment by NICAM, Geophys. Clim., Dyn., 48, 2507-2528, doi:10.1007/s00382-016-3219-z.
  28. Nasuno, T., H. Yamada, M. Nakano, H. Kubota, M. Sawada, and R. Yoshida, 2016: Global cloud-permitting simulations of Typhoon Fengshen (2008), Geosci. Lett. 3, 22, doi:10.1186/s40562-016-0064-1.
  29. Nakano, M., M. Sawada, T. Nasuno, M. Satoh, 2015: Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model, Geophys. Res., Lett. 42, 565-571, doi:10.1002/2014GL062479.
  30. Nakano, M., M. Matsueda, M. Sugi, 2013: Future projections of heatwaves around Japan simulated by CMIP3 and high-resolution MRI atmospheric climate models, J. Geophys. Res., 118, 3097-3109, doi:10.1002/jgrd.50260.
  31. Nakano, M., T. Kato, S. Hayashi, S. Kanada, Y. Yamada, K. Kurihara, 2012: Development of a 5-km-mesh cloud-system-resolving regional climate model at the Meteorological Research Institute, J. Meteor. Soc. Jpn., 90A, 339-350, doi:10.2151/jmsj.2012-A19.
  32. Murata, A., M. Nakano, S. Kanada, K. Kurihara, H. Sasaki, 2012: Summertime temperature extremes over Japan in the late 21st century projected by a high-resolution regional climate model, J. Meteor. Soc. Jpn., 90A, 101-122, doi:10.2151/jmsj.2012-A05.
  33. Kanada, S., A. Wada, M. Nakano, T. Kato, 2012: Effect of planetary boundary layer schemes on the development of intense tropical cyclones using a cloud-resolving model, J. Geophys. Res., 117 (D3), D03107, doi:10.1029/2011JD016582.
  34. Kanada, S., M. Nakano, and T. Kato, 2012: Projection of future changes in precipitation and the vertical structures of the frontal zone during the Baiu season in the vicinity of Japan using a 5-km-mesh regional climate model. J. Meteor. Soc. Japan. 90A, 65-86, doi:10.2151/jmsj.2012-A03.
  35. Nakano M., S. Kanada, T. Kato, K. Kurihara, 2011: Monthly maximum number of consecutive dry days in Japan and its reproducibility by a 5-km-mesh cloud-system resolving regional climate model, Hodrologial Research Letters, 5, 11-15, doi:10.3178/hrl.5.11.
  36. Kanada, S., M. Nakano, T. Kato, 2010: Changes in mean atmospheric structures around Japan during July due to global warming in regional climate experiments using a cloud-system resolving model, Hydrological Research Letters, 4, 11-14, doi:10.3178/hrl.4.11.
  37. Kanada, S., M. Nakano, and T. Kato, 2010: Climatological characteristics of daily precipitation over Japan in the Kakushin regional climate experiments using a non-hydrostatic 5-km-mesh model: Comparison with an outer global 20-km-mesh atmospheric climate model, SOLA, 6, 117-120, doi:10.2151/sola.2010-030.
  38. Nakano, M., S. Kanada, T. Kato, 2010: Statistical analysis of simulated direct and indirect precipitation associated with typhoons around Japan using a cloud-system resolving model, Hydrological Research Letters, 4, 6-10, doi:10.3178/hrl.4.6.
  39. Oku, Y., T. Takemi, H. Ishikawa, S. Kanada, M. Nakano, 2010: Representation of Extreme Weather during a Typhoon Landfall in Regional Meteorological Simulations: A Model Intercomparison Study for Typhoon Songda (2004), Hydrological Research Letters, 4, 1-5, doi:10.3178/hrl.4.1.
  40. Kanada, S., M. Nakano, S. Hayashi, T. Kato, M. Nakamura, K. Kurihara, A. Kitoh, 2008: Reproducibility of Maximum Daily Precipitation Amount over Japan by a High-resolution Non-hydrostatic Model, SOLA, 4, 105-108, doi:10.2151/sola.2008-027.