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8. 遅い粘性流

8.1 遅い流れを表現する方程式

ナビエ・ストークス流体 (∇·v = 0, ρ = ρ0 =定数)において v = 0 のまわりに線
形化する.

∂v

∂t
= − 1

ρ0
∇p+ ν∇2v (1)

これをストークス近似 (Stokes’s approximation) という. 連続の式は

∇·v = 0. (2)

8.2 定常なストークス流れ

• ストークス近似した方程式の一般的性質

ストークス近似した式 (1)の発散をとると

0 = ∇2p. (3)

よって, p は調和関数. 回転をとると

∂ω

∂t
= ν∇2ω. (4)

• 定常 ∂/∂t = 0 の場合.

渦度方程式は

0 = ∇2ω (5)

となる. 渦度も調和関数になる. 運動方程式は

0 = − 1

ρ0
∇p+ ν∇2v. (6)

となる.

定常なストークス流れを求める一般的な方法は

v = vp + ṽ (7)

と速度場を分割し, ṽ を決定することである. ただし, vp は適当なポテンシャ
ル流れであり, 以下を満たす.

∇·vp = 0, ∇×vp = 0 (8)
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したがって,

∇2vp = 0 (9)

である. 分割した速度場をストークス近似の運動方程式に代入すると

0 = − 1

ρ0
∇p+ ν∇2ṽ (10)

となる.

ここで, 天下り的に任意のベクトル調和関数 ξ(x)

∇2ξ(x) = 0 (11)

を考える. この ξ を用いて

ṽ = ∇(x · ξ)− 2ξ (12)

p = 2η∇·ξ (13)

(η = νρ0) とおくと,

0 = − 1

ρ0
∇p+ ν∇2ṽ (14)

を満たす. よって ξ(x) は定常ストークス流れを表現するものである.

• r−1 による展開

物体が存在する場合 r−1 で展開して

ξi = λi
1

r
+ λij

∂

∂xj

1

r
+ λijk

∂2

∂xj∂xk

1

r
+ · · · (15)

1/r の項だけとると (ξ = λ
r
と選択したことと同じ), ṽ と p は以下のように

表現される.

ṽ = ∇(x · ξ)− 2ξ = ∇(x · λ/r)− 2λ/r (16)

p = 2η∇·ξ = 2η∇·(λ/r) = 2ηλ · ∇1

r
(17)

• 成分表示

ξ = λ
r
とおき, λ 方向を軸とする極座標系を選ぶ.

xyz 系では λ = (0, 0, λ) と表され,

x = r sin θ cosφ, (18)

y = r sin θ sinφ, (19)

z = r cos θ (20)

なので,

x · λ = λr cos θ = z · λ (21)
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である. 極座標では

∇ =

(
∂

∂r
,
1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)
(22)

なので

ṽ = ∇(x · ξ)− 2ξ = ∇(x · λ/r)− 2λ/r = ∇(λ cos θ)− 2

r
λez (23)

ここで,

ez = cos θer − sin θeθ (24)

を使うと,

ṽ =
∂

∂r
(λ cos θ) · er +

1

r

∂

∂θ
(λ cos θ) · eθ +

1

r sin θ

∂

∂φ
(λ cos θ) · eφ

− 2

r
λ (cos θer − sin θeθ) (25)

= 0 · er −
1

r
(λ sin θ) · eθ + 0 · eφ − 2

r
λ (cos er − sin θeθ) (26)

= −2

r
λ cos er +

1

r
λ sin θeθ (27)

これより,

ṽr = −2
λ

r
cos θ, (28)

ṽθ =
λ

r
sin θ, (29)

ṽϕ = 0, (30)

p = −2η
λ

r2
cos θ (31)

ただし λ = |λ| である.

流線関数 Ψ̃ としては, 以下を使えば良い.

Ψ̃ = −λr sin2 θ (32)

ṽr =
1

r2 sin θ

∂Ψ̃

∂θ
(33)

ṽθ = − 1

r sin θ

∂Ψ̃

∂r
(34)

これが, ストークス近似の解の最も基本的なもの. ストークス極 (Stokeslet)

による流れという.

• 一様流中の球の場合

– 球のまわりのポテンシャル流は

Ψ =
1

2
Ur2 sin2 θ

(
1− a3

r3

)
= sin2 θ

(
1

2
Ur2 − 1

2
U
a3

r

)
, (35)

vr =

(
1− a3

r3

)
U cos θ, (36)

vθ = −
(
1 +

a3

2r3

)
U sin θ (37)
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であった. しかし, この解は粘性のある場合の境界条件

v = 0 (r = a) (38)

を満たさない. r = a で vr = 0 であるだけ.

– そこでこのポテンシャル流れを参考に, あらためて, ポテンシャル流れ

Ψ = sin2 θ

(
1

2
Ur2 − β

r

)
(39)

を定義する. この流れにストークス極による流れを加えて

Ψ = sin2 θ

(
1

2
Ur2 − β

r
− λr

)
(40)

とし, 境界条件 r = a で

Ψ =
∂Ψ

∂r
= 0 (41)

を考慮する. Ψ = 0 の条件に関しては

Ψ(r = a) = sin2 θ

(
1

2
Ua2 − β

a
− λa

)
, (42)

0 = sin2 θ

(
1

2
Ua2 − β

a
− λa

)
, (43)

0 =
1

2
Ua2 − β

a
− λa. (44)

∂Ψ
∂r

= 0 の条件に関しては

∂Ψ

∂r
(r = a) = sin2 θ

(
Ua+

β

a2
− λ

)
, (45)

0 = sin2 θ

(
Ua+

β

a2
− λ

)
, (46)

0 = Ua+
β

a2
− λ. (47)

これより,

β = −1

4
Ua3, λ =

3

4
Ua (48)

となる. これより, 球の周りの流れが以下のように求まる.

Ψ = sin2 θ

U

2
r2 +

Ua3

4

1

r︸ ︷︷ ︸
ポテンシャル流

−3

4
Uar︸ ︷︷ ︸

ストークス極による流れ

 (49)

=
1

2
U(r − a)2(1 +

a

2r
) sin2 θ, (50)
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(a) 球のまわりの流れ

(b) ポテンシャル流の部分 (c) ストークス極による流れ

図 1: 粘性流体中の球のまわりの流れの流線関数. 黒太線が円柱表面を表す.
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vr =
1

r2 sin θ

∂Ψ

∂θ
= U(r − a)2

(
1 +

a

2r

) cos θ

r2
, (51)

vθ = − 1

r sin θ

∂Ψ

∂r
= −1

2
U

(
2− 1

2

a3

r3
− 3

2

a

r

)
sin θ, (52)

p = −2η
λ

r2
cos θ = −2η

3

4
Ua

cos θ

r2
= −3

2
ηUa

cos θ

r2
(53)

流れ場を 図 1 に示す.

– 球に働く力

圧力は p = −2ηλ cos θ/r2 に λ = 3Ua/4 を代入して

p = −3

2
ηUa

1

r2
cos θ (54)

よって球の表面 r = a での法線応力 σrr, 接線応力 σrθ はそれぞれ

σrr = −p+ 2η
∂vr
∂r

=
3

2

ηU

a
cos θ (55)

σrθ = η

[
r
∂

∂r

vθ
r
+

1

r

∂vr
∂θ

]
= −3

2

ηU

a
sin θ (56)

圧力抵抗 (法線応力の積分)

Dp =

∫
σrr cos θdS (57)

=
3

2

ηU

a
2πa2

∫ π

0

cos2 θ sin θdθ (58)

= 2πηaU (59)

摩擦抵抗 (接線応力の積分)

Df =

∫
σrθ sin θdS (60)

=
3

2

ηU

a
2πa2

∫ π

0

sin3 θdθ (61)

= 4πηaU (62)

よって全抵抗は

D = Dp +Df = 6πηaU (63)

これをストークスの抵抗法則と言う.
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9. 乱流の開始

9.1 流体の無次元方程式

非圧縮の Navier-Stokes 方程式と連続の式

∂v

∂t
+ v · ∇v = −1

ρ
∇p+ ν∇2v,∇·v = 0 (64)

を無次元化する. 系の長さスケールを L, 速度スケールを U とする. 変数は以下の
ように無次元化される.

x∗ = Lx, (65)

v∗ = Uv, (66)

t∗ =
L

U
t, (67)

p∗ = ρU2p (68)

ここで, ∗ を付けたものが有次元量. こうすると, 各演算子は以下のように無次元
化される.

∇∗ =
1

L

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

1

L
∇, (69)

∂

∂t∗
=

U

L

∂

∂t
(70)

よって, 連続の式は次のように無次元化される.

∇·∗v∗ = 0, (71)

1

L
∇·(Uv) = 0, (72)

∇·v = 0 (73)

Navier-Stokes 方程式は以下のように無次元化される.

∂v∗

∂t∗
+ v∗ · ∇∗v∗ = − 1

ρ∗
∇∗p∗ + ν∇2∗v∗, (74)

U2

L

∂v

∂t
+

U2

L
v · ∇v = −U2

L
∇p+ ν

U

L2
∇2v (75)

両辺を U2

L
で割る.

∂v

∂t
+ v · ∇v = −∇p+

ν

LU
∇2v (76)

ここで, レイノルズ数 (Reynolds number)

Re ≡ UL

ν
(77)

を定義する. Re は無次元定数. Navier-Stokes 方程式は

∂v

∂t
+ v · ∇v = −∇p+

1

Re
∇2v (78)

となる.

7



9.2 レイノルズの相似則

無次元化された Navier-Stokes 方程式はただ 1 つのパラメータRe を含む. 無次元
数で流れを記述するとき, Re が等しい流れはまったく同形になる. これをレイノ
ルズの相似則 (Reynolds’s law of similarity) という.

無次元の Navier-Stokes 方程式

∂v

∂t
+ v · ∇v = −∇p+

1

Re
∇2v (79)

を解けば, 解の速度は

v = f(x, t;Re) (80)

となる. これを有次元に戻すと

v∗ = Uf(
1

L
x∗,

U

L
t∗;Re) (81)

定常の場合なら, 速度場は x∗

L
と Re で決まる. Re が等しければ, 境界の形が幾何

学的に相似な 2 つの流れは, 流れの場全体が相似になる.

円柱のまわりの流れでは, Re が 1000 程度になると乱流的な後流が発生 (図 2).

図 2: 様々な Re 数に対する円柱のまわりの流れ. 今井 (1973) の図 1-1 を転載.
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