SmT(シント)

松江工業高等専門学校 情報工学科 青笹 誓也

今日の流れ

1. SmTの紹介

- 2. SmTを使おう
- 3. LEDを光らせよう
- 4. 拡張センサから温度をとりサーバへ送ろう
- 5. mruby/cのソースコードを書いてみよう

SmTの紹介

SmT(シント) スモウルビーをつかってマイクロコン ピュータ(マイコン)を動かせるように したもの

*	.		82	- <u>(</u>); ₹		ערע													Ø	意見を送る	Ć		🐉 si	nalru
-	⊐-ĸ	1 37	チューム	4 0 ²	≅	◆ Л	ノビー																	J
し 動き	個人	Wi-fiに接続す	5 SSID:	פדאו	- P: (SW1 SW2	0							
見た目		LED1 -	を出力モート	≈で使う												SW3	0	• 🏨		000			•	
		スイッチ1	 を入力 	Eードで使	Э											5004		_ •	•					
-1~>		ターを使う																- 4						
- 制御	温度	計を使う																		•				
ا		1 ● ポー	トの拡張温度	ぼセンサを	使う																		-	
● 決難		LED1 -	훈 ON •	にする											L			•			~		•	
一 変数		「ド ・ 」の首	æ 1000	ミリ砂鳴	6 7								Ċ	0		7754	ь.							
作ったブ		イツチ1 •] ۵	ott態										(a)		base_	board		+	x 0		1 у	0	
ック	38.84 10.35	目前の温度 温度センサの	5 2											=		表示する ①	Ø		大き	ਰੇ 100		向き (90	
-		danse e 9900								1					9									

SmTの紹介

・マイコン(SmT用ボード)

スイッチ

SmTの紹介

SmTの紹介

•	ルビー						
							SW1 0
							SW2 0
							SW3 65660000 _
							SW4 0
) A]	а — а —	
		LED1 •	を	ON 🕈	695	н. —	
		LED2 🔻	を	ON 🔻	にする		
		LED3 🔻	を	ON 🔻	にする	н н. 1	· · · · · · · · · · · · · · · · · · ·
		LED4 🔻	を	ON 👻	にする	· ·	

今日の流れ

- 1. SmTの紹介
- 2. SmTを使おう
- 3. LEDを光らせよう
- 4. 拡張センサから温度をとりサーバへ送ろう
- 5. mruby/cのソースコードを書いてみよう

SmTを使おう

起動しよう!

SmTを使おう

- ・SmTの操作方法はスモウルビーとおなじ
- ・ブロックをクリックするとシミュレーターが動き,
 もう一度クリックすると止まる

SmTを使おう

- C:¥SmT-win32-x64¥resouces¥app¥esp¥mrblib¥loops
 フォルダの中にルビーをmaster.rbという名前に
 なっているのを確認してからプログラムを保存
- ・保存を押すと上書きしますか?と聞かれるのでは いを選ぶ

SmTを使おう

・プログラムをボードに送るにはメニューバーの esp32→書き込みのボタンを押す ・ 結果の画面が表示され、100%になれば完了 (時間が結構かかる)

今日の流れ

- 1. SmTの紹介
- 2. SmTを使おう
- 3. LEDを光らせよう
- 4. 拡張センサから温度をとりサーバへ送ろう
- 5. mruby/cのソースコードを書いてみよう

・LEDを光らせるには「光らせたいLEDを出力モー ドで使う」ブロックと「光らせたいLEDをONにす る」ブロックを使う

LED1を1秒ごとにチカチカ させるプログラム

LEDを光らせよう

- ・LEDと同じように「スイッチを使う」ブロックを 使う
- 「スイッチの状態」ブロックはONの時に1, OFF
 の時に0を返す

ON:1 OFF:0

スイッチ1 ──→ スイッチ4

スイッチ3がONの時,LED1,2を スイッチ4がONの時,LED3,4を 点灯させるプログラムを作ろう (OFFの時は消灯)

LEDを光らせよう

今日の流れ

- 1. SmTの紹介
- 2. SmTを使おう
- 3. LEDを光らせよう
- 4. 拡張センサから温度をとりサーバへ送ろう
- 5. mruby/cのソースコードを書いてみよう

拡張センサから温度をとりサーバへ送ろう

・拡張ボードと拡張温度センサをマイコンに 取り付ける

拡張ボードと拡張センサ

取付方向に注意!! 文字の方向が実験基盤と同 じになるように取り付ける

拡張センサから温度をとりサーバへ送ろう

- OSSのグラフ描画ツール
- ユーザ登録後チャネルを作ることで利用可能
- チャネルID,リード(ライト)キー の情報をもつデータを

HTTPで送ると自動でグラフを作成してくれる

- ・「企業Wi-fiに接続する」ブロックで学内Wi-fiに 接続できる
- 「拡張温度センサを使う」ブロックでポートを 指定して温度センサを使う
- ・拡張温度センサは湿度も計測できるが気温の データが必要になる

企業Wi-fiに接続する SSID: 🔵 ユーザー名: 🔵 パスワード: 🌑	temp ▼ を 拡張温度センサの気温 にする
1 ▼ ポートの拡張温度センサを使う	humi ▼ を 拡張温度センサの湿度 気温: temp にする

拡張センサから温度をとりサーバへ送ろう

- Ambientにデータを送るにはチャネルID,リード
 キー,ライトキーを指定する必要がある
- Ambientは一つのチャネルにd1~d8の8個のデー タを格納できるので「送るデータ」ブロックで 指定する
- ・データの指定が終わったら「データを送信」 ブロックでAmbientに送信する

- ・LEDと同じように「モニターを使う」ブロックで 使える
- ・モニターは「モニターの何行目に書く」ブロック
 でアルファベットだけを書くことができる
- ・変数を使うときはC言語と同じように書ける

拡張センサから温度をとりサーバへ送ろう

拡張温度センサから気温,湿度を取得し モニターの1行目にtemp:OO モニターの2行目にhumi:OO と毎秒表示し,そのデータをAmbientに 30秒ごとに送信するプログラムを作ろう

拡張センサから温度をとりサーバへ送ろう

今日の流れ

- 1. SmTの紹介
- 2. SmTを使おう
- 3. LEDを光らせよう
- 4. 拡張センサから温度をとりサーバへ送ろう
- 5. mruby/cのソースコードを書いてみよう

mruby/cのソースコードを書いてみよう

- ・SmTはブロックからmruby/cのソースコー ドに変換を行ってプログラムを動かしていた
- ・3,4で作成したブロックプログラムを mruby/cの生のソースコードで書いてみよう

- mruby/cのプログラムの書き方は基本的にRubyと ほとんど同じ
- ・C言語とは違い#includeやmain関数等も必要ない
- ・変数の型宣言は不要で「変数名 = 値」というよう にすぐ使える
- ・条件分岐は「if 条件文 処理 end (else 処理 end)」となる
- ・くり返し処理は「while 条件文 処理 end」となる
- ・待つ処理は「sleep(秒数)」となる

mruby/cのソースコードを書いてみよう

・3のプログラムに必要な命令
 gpio_init_output(ポート番号)
 - ポート番号のLEDを初期化する

gpio_init_input(ポート番号)

- ポート番号のスイッチを初期化する

gpio_set_level(ポート番号,設定する状態)

- 状態を1にするとポート番号のLEDをつけ、0にすると消す gpio_get_level(ポート番号)

ポート番号のスイッチの状態を取得する
 スイッチがONのとき1, OFFのとき0を返す

・LEDとスイッチのポート番号表

器具	ポート番号
LED1	13
LED2	12
LED3	14
LED4	27
LED5	26
LED6	25
LED7	33
LED8	32
スイッチ1	34
スイッチ2	35
スイッチ3	18
スイッチ4	19

mruby/cのソースコードを書いてみよう

・LED1を1秒おきに点滅させるサンプルコード

gpio_init_output(13) while true gpio_set_level(13,1) sleep(1) gpio_set_level(13,0) sleep(1) end

・スイッチ3がONなら1秒待つサンプルコード

gpio_init_input(18) while true if gpio_get_level(18) == 1 sleep(1) end end

mruby/cのソースコードを書いてみよう

- ・4のプログラムに必要なサンプル
- ➤ Wi-fiに接続する

initialize_wifi(0,SSID,ユーザ名,パスワード)

≻モニターの初期化

i2c = GpioTest.new(22, 21)

i2c.i2c_init

i2c.lcd_init

▶ 拡張温度センサの初期化

```
sht = GpioTest.new(2,4)
sht.sht_init
```

- ・4のプログラムに必要なサンプル
- > Ambientの設定 ambient_client_id = "チャネルID" ambient_read_key = "リードキー" ambient_write_key = "ライトキー" url = "http://ambidata.io/api/v2/channels/#{ambient_
 - client_id}/data"
- ▶ 気温と湿度の取得
 - temp = sht.sht_get_temp / 100.0
 - humi = sht.sht_get_humi(temp)

mruby/cのソースコードを書いてみよう

- ・4のプログラムに必要なサンプル
- ➤ Ambientのデータをセットする
 - data = "{
 - ¥"writeKey¥": ¥"#{ambient_write_key}¥",
 - ¥"d1¥": #{気温},
 - ¥"d2¥": #{湿度}
 - }".tr("¥n", "")
- ▶ モニターに文字列を書き込む

i2c.lcd_write(0x00, [0x01, 0x80]) //1行目に書く i2c.lcd_write(0x40, sprintf("文字列")) i2c.lcd_write(0x00, [0x80 + 0x40]) //2行目に書く i2c.lcd_write(0x40, sprintf("%d",変数))

- ・4のプログラムに必要なサンプル
- ➤ Ambientにデータを送信する

mruby/cのソースコードを書いてみよう

```
initialize wifi(0,"H550W pub","j1501","")
                                                    ¥"d1¥": #{$temp},
i2c = GpioTest.new(22, 21)
                                                    ¥"d2¥": #{$humi}
i2c.i2c init
                                                    }".tr("¥n", "")
i2c.lcd init
                                                    connected = check network status()
sht = GpioTest.new(2,4)
                                                    if connected
sht.sht init
                                                     http client init(url)
ambient client id = "17575"
                                                     http client set header("Content-
ambient read key = "b0be70026092fb5a"
                                                                 Type", "application/json")
ambient write key = "75c3d34cd511e0e6"
                                                     http client set header("Connection", "close")
url = "http://ambidata.io/api/v2/channels/#{ambie
                                                     http client set post field(data)
nt client id}/data"
                                                     get http response()
scount = 0
                                                     http client cleanup()
while true do
                                                    end
 $count += 1
                                                   end
 $temp = sht.sht get temp / 100.0
                                                   i2c.lcd write(0x00, [0x01, 0x80])
 $humi = sht.sht get humi($temp)
                                                   i2c.lcd write(0x40, sprintf("temp:%d",$temp))
 if $count % 30 == 0
                                                   i2c.lcd write(0x00, [0x80 + 0x40])
  data = "{
                                                   i2c.lcd write(0x40, sprintf("humi:%d",$humi))
  ¥"writeKey¥": ¥"#{ambient write key}¥",
                                                   sleep(1)
                                                  end
```