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1 —Standard QG models

1.1 — Eddies in shear

We will show that an isolated vortex has a smaller vertical scale than the jets. If

qi = qi(y) + q′i(x)

with qi = A cos(`y) (deep shear flow), then, on all streamlines extending to infinity

ψi + ψ′i = − 1

`2
(qi + q′i)

so that
∇2ψ′i ± Fi(ψ′2 − ψ′1) = −`2ψ′i

From this, we find the equations for the barotropic and baroclinic components(
∇2 + `2

)
(H1ψ

′
1 +H2ψ

′
2) = 0(

∇2 − F1 − F2 + `2
)

(ψ′1 − ψ′2) = 0

But for an isolated solution, which decays like exponential or Kn Bessel functions, we
will have ∇2ψ ∼ ψ. This is inconsistent with the vortex having an exterior barotropic
component, but can occur for the baroclinic problem if

`2 < F1 + F2 =
1

R2
d

The length scale of the jets must be larger than the deformation radius.
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2 —1.75 layer model

centered
sa
no deep flow
infinite layer
deep jets, standard atmospheric model
2-beta

If we have an infinitely deep lower layer but with steady jet flows like the upper layer,

U1 = U2 = U sin(`y)

the “topographic” PV is just T = Fψ2 = (FU/`) cos(`y). Our far-field flow is Ψ =
(U/`) cos(`y), and the PV is −`U cos(`y) − (FU/`) cos(`y) + T = −`U cos(`y) = −`2Ψ.
Our conserved invariant is

A = −1

2

∫∫ (
q(x)− T (x)

)
G(x− x′)

(
q(x′)− T (x′)

)
− 1

2

1

`2

∫
q2

or, writing q = q + q′ where q = −`2Ψ,

A−A = −
∫∫

q′(x)G(x− x′)
(
q(x′)− T (x′)

)
− 1

`2

∫
qq′ − 1

2

∫∫
q′(x)G(x− x′)q′(x′)− 1

2

1

`2

∫
q′2

= −
∫
q′(x)Ψ(x) +

∫
Ψq′ − 1

2

∫∫
q′(x)G(x− x′)q′(x′)− 1

2

1

`2

∫
q′2

= −1

2

∫∫
q′(x)G(x− x′)q′(x′)− 1

2

1

`2

∫
q′2

The first term is positive definite and the second negative definite. The flow will be stable
if ∫

q′2 > −`2
∫
ψ′q′

If we Fourier-transform q′, this implies∫
dk|q̂ |2 >

∫
dk

`2

|k|2 + F
|q̂ |2

This will be true if `2 < F , giving again the condition that the deformation radius is less
than the jet scale.
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2.1 — Steady vortices in shear

The equations here

∂

∂t
q = [q, ψ] , q = (∇2 − F )ψ + T , T = Fψ2 = F

U

`
cos(`y)

will have steady solutions if
q = Q(ψ)

We choose a simple representation

q = −`2ψ + q0H(b+ η − r) ⇒ ∇2ψ − α2ψ + F
U

`
cos(`y) = q0H(b+ η − r)

with α2 = F − `2; the curve b+ η must be a streamline. This will have isolated solutions
if F > `2, again requiring the deformation radius to be smaller than the jet scale. The
solutions can be written as

ψ =
U

`
cos(`y) + ψ′ , ∇2ψ′ − α2ψ′ = q0H(b+ η − r) , ψ(b+ η(θ), θ) = ψ0

If the vortex is small and only weakly perturbed, the cos 2θ part of ψ′ is just

ψ′2 = q0G2(r|b)η2

and
∂

∂r
ψ′0 = −g0G1(r|b)

The estimated value of ψ′ on the boundary is therefore

ψ′(b+ η, θ) ' q0

(
G2(b|b)−G1(b|b)

)
η2 cos 2θ

This must cancel the η2 part of (U/`) cos(`b sin θ). Projecting that out gives (U/`)2J2(`b).
(In the limit of small b, that’s just U`b2/4.) We could include the cos(4θ), cos(6θ) ...
modes as well. But, here we have

η2 =
2UJ2(`b)

q0(G1 −G2)

with Gn(b|b) = −bIn(αb)Kn(αb). Of course, this breaks down when η becomes too large:
the boundary becomes indented at the north and south. (This happens when η > 0.2b.)

We can find larger amplitude solutions by a simple root-finding procedure:

• given a set of points on the estimated boundary, use contour dynamics to find the
velocities for ψ′ in between the points

• add the U sin(`y)x̂ contributions and calculate the normal components

• move the points until these normal velocities vanish.
steady vortices in shear b=0.5 b=1.4 std sa
dy=1 std sa dbsa
other offsets pi/6 pi/2
We can also use the simulated annealing procedure to find more extreme states in the

continuous model.
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3 —Deep QG

Let us begin considering some puzzles about the Red Spot and the jets. The jets
appear to have reversals in ∂

∂y q yet are stable over decades. (There are small-scale eddies,

but no large-scale roll-up). The spots are long-lived, though some of the others have
disappeared, and the Red Spot is apparently weakening, though we don’t know if that is
transient or not. But, despite the turbulence on its edges, it has certainly persisted.

From the vorticity equation, we find the component along some direction n̂ satisfies

∂

∂t
Z +∇ · Zu = (2Ω + ζ) · ∇(n̂ · u) + n̂ · (∇× gτ r̂)

with Z = n̂ · (2Ω + ζ). The last term is equal to ∇gτ · (r̂ × n̂). Expanding ∇ · (Zu) and
using the mass equation gives

∂

∂t
Z + u · ∇Z − Zu · ∇ ln ρ = (2Ω + ζ) · ∇(n̂ · u) +∇gτ · (r̂× n̂)

Like Ingersoll and Pollard(1982) and Yano and Flierl (1994), we now take n̂ = ẑ (with the
case n̂ = r̂ dealt with below); then Z = ζ + 2Ω and the small Rossby number version is

∂

∂t
ζ + u · ∇ζ − 2Ωu · ∇ ln ρ = 2Ω

∂

∂z
(ẑ · u) +∇gτ · (r̂× ẑ)

or
D

Dt
(ζ − 2Ω ln ρ) = 2Ω

∂

∂z
(ẑ · u) +∇gτ · (r̂× ẑ)

The anelastic density structure takes the place of the β-effect. As we shall see, it is
negative. Writing the velocity in terms of the components perpendicular and parallel to
2Ω, u = u⊥ + wẑ gives(

∂

∂t
+ u⊥ · ∇

)
(ζ − 2Ω ln ρ) + w

∂

∂z
ζ =

1

ρ

∂

∂z
ρw +∇gτ · (r̂× ẑ)

The thermal wind balance

2Ωẑ× u = −∇φ+ gτ r̂

gives
∂

∂z
φ = gτ ẑ · r̂

and, for the velocities perpendicular to Ω,

2Ωu⊥ = ẑ×∇φ− gτ ẑ× r̂

When the fluid is isentropic (τ = 0), the pressures are independent of depth and the
horizontal velocities are also – u⊥ = ẑ ×∇(φ/2Ω). This implies ζ = ∇2ψ with ψ = φ/Ω

4



acting like a streamfunction for the perpendicular flow. w ∂
∂z ζ is negligible and we can

multiply the vorticity equation by ρ and integrate; if the surface density goes to zero(
∂

∂t
+ u⊥ · ∇

)
q = 0 , q = ζ

∫
dzρ− 2Ω

∫
dzρ ln ρ

Since ζ is small compared to 2Ω, changes in ζ as a column of fluid moves north will be
dominated by the second term, proving a term

−2Ω

∫
dz ρ ln ρ

/∫
dz ρ

analogous to the beta-effect but decreasing with latitude.
An alternate derivation begins with the anelastic equations, splitting the buoyancy

field into a background stratification depending on radius plus deviations

τ = τ(r) + τ ′

Ertel’s theorem then takes the form

q =
1

ρ
(∇τ · (2Ω + ζ) +∇τ ′ · (2Ω + ζ))

=
τ r
ρ

(
f + ζ +

1

τ r
2Ω · ∇τ ′ + 1

τ r
ζ · ∇τ ′

)
≡ τ r

ρ
q′

The conservation equation gives

D

Dt
q′ + q′

ρ

τ r

D

Dt

τ r
ρ

= 0 or
D

Dt
q′ − q′ τ r

ρ

D

Dt

ρ

τ r
= 0

Using the fact that ρ and τ depend only on r and the conservation of τ + τ ′ turns this into

D

Dt
q′ − q′ τ r

ρ
w
∂

∂r

(
ρ

τ r

)
= 0 ,

D

Dt
q′ + q′

1

ρ

∂

∂r

(
ρ

τ r

)
D

Dt
τ ′ = 0

This is still an exact statement; now, however, we will drop higher order terms in the
Rossby number. This gives

D

Dt

(
f + ζ +

1

τ r
2Ω · ∇τ ′

)
+ f

1

ρ

∂

∂r

(
ρ

τ r

)
D

Dt
τ ′ = 0 ,

D

Dt
c =

d

dt
c+ r̂ (∇ψ ×∇c)

where we also neglect advection by the divergent flow. We also make the two-scale approx-
imation ∂

∂θ →
∂
∂θ + ε ∂

∂Θ . All the derivatives on the dynamical fields are on the short scale,
so that f = 2Ω sin Θ is constant and the only Θ derivative that appears in on f , leading to
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the β-effect term. The two-scale formalism implies that we can pull the coefficient inside
the D

Dtτ
′ to get an approximately conserved property

D

Dt

(
f + ζ +

1

τ r
2Ω · ∇τ ′ + fτ ′

1

ρ

∂

∂r

(
ρ

τ r

))
= 0

or
D

Dt
(Q+ f) = 0 , Q = ∇2

hψ +
1

ρ
2Ω · ∇

(
ρ

τ r
τ ′
)

Finally, we need to relate buoyancy perturbations τ ′ to ψ. To do this, we use the
generalized thermal wind equation

2Ω× (r̂×∇ψ) = r̂ 2Ω · ∇ψ − f∇ψ = ∇φ+ τ ′∇Φ

Taking the curl (remembering that f is constant under the two-scale approximation) gives

−r̂×∇(2Ω · ∇ψ) = g∇τ ′ × r̂

so that
gτ ′ = 2Ω · ∇ψ

and our QGPV becomes

D

Dt
(Q+ f) = 0 , Q = ∇2

hψ +
1

ρ
2Ω · ∇

(
ρ

N2
2Ω · ∇ψ

)
(Deep QG)

with N2 = gτ r. For a shallow fluid, 2Ω · ∇ becomes f ∂
∂z and we recover the standard

QG equations, but for a deep, weekly stratified interior, we see a tendency towards Taylor
columns 2Ω · ∇ψ → 0.

4 —Two-beta model

sketch
The previous derivations argue that the deep fluid has a negative and strong β-effect.

Incorporating this in the QG two-layer model gives

∂

∂t
qi = [qi, ψi]

q1 = ∇2ψ1 − F1(ψ1 − ψ2) + β1y

q2 = ∇2ψ2 − F2(ψ2 − ψ1) + β2y
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4.1 — Baroclinic instability

With opposite-signed β, the Rayleigh criterion for baroclinic instability is satisfied
even without shear. Thus instability occurs for very small shears and thermal gradients.
The stability problem is (

U + QyL−1
)
q′ = cq′

with

q′ =

(
q′1
q′2

)
, U =

(
U1 0
0 U2

)
, Qy =

(
Q1y 0

0 Q2y

)
and

L =

(
−K2 − F1 F1

F2 −K2 − F2

)
The PV gradients are

Qy =

{
β1 − ∂2

∂y2U1 + F1(U1 − U2)

β2 − ∂2

∂y2U2 − F2(U1 − U2)

Consider pure BCI without the jets. For β1 > 0 and β2 < 0, the Rayleigh criterion for
instability will be satisfied even for U1 = U2 = 0 as mentioned above. But the Fjortoft
criterion for stability requires

UQy

to be negative for both layers. That will happen if

β2/F2 < U1 − U2 < −β/F1

Eastward shears (expected from solar heating) will be unstable for arbitrarily small values
but will, concomitantly, have small growth rates.

bci
jet generation
jet structure
deep jets

In the two-beta model,

• for small shears, the instabilities are weak and small scale

• this can force jets which are quite zonal

• β − Uyy can change sign in the upper layer
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