Figures

Some results of DCPAM are compared with $\mathrm{MGS^{1}\text{-}TES^{2}}$ and $\mathrm{MRO^{3}\text{-}MCS^{4}}$ data.

 ¹Mars Global Surveyor
²Thermal Emission Spectrometer
³Mars Reconnaissance Orbiter
⁴Mars Climate Sounder

Figure 1: Daily mean dust optical depth prescribed in DCPAM

Figure 2: Double of dust optical depth observed by MGS-TES in MY26 $\,$

Figure 3: Daily mean maximum height of dust distribution prescribed in DC-PAM $\,$

Ls=90-12@ustDensScledOptDep Level latitude CONTOUR INTERVAL = 1.000E+00

 $L_s=0^{\circ}-30^{\circ}$ by DCPAM

Ls=30-60 DustDensSciedOptDep Level

 $\label{eq:Figure 4: DustDensScledOptDep at Figure 7: DustDensScl$ $L_s=90^{\circ}-120^{\circ}$ by DCPAM

 $\dot{L_{\rm s}=30^{\circ}\text{--}60^{\circ}}$ by DCPAM

Figure 5: DustDensScledOptDep at Figure 8: DustDensScledOptDep at $\rm L_s{=}120^{\circ}{-}150^{\circ}$ by DCPAM

Figure 6: DustDensScledOptDep at Figure 9: DustDensScledOptDep at L_s =60°-90° by DCPAM

 $\rm L_s{=}150^{\circ}{-}180^{\circ}$ by DCPAM

 $\label{eq:Figure 10: DustDensScledOptDep at Figure 13: DustDensScledOptDep at } Figure \ 13: \ DustDensScledOptDep \ at \\$ $L_s=180^{\circ}-210^{\circ}$ by DCPAM

Ls=210-24QustDensScledOptDep Level

 $L_s=270^{\circ}-300^{\circ}$ by DCPAM

 L_s =210°-240° by DCPAM

Figure 11: DustDensScledOptDep at Figure 14: DustDensScledOptDep at $L_s=300^{\circ}-330^{\circ}$ by DCPAM

Figure 12: DustDensScledOptDep at Figure 15: DustDensScledOptDep at L_s =240°-270° by DCPAM

 $\rm L_s{=}330^\circ{-}360^\circ$ by DCPAM

03 LST and $Ls=0^{\circ}-30^{\circ}$ by DCPAM

Ls=30-6@ustDensScledOptDep Level latitude

 $\label{eq:Figure 16:DustDensScledOptDep at Figure 19:DustDensScledOptDep at Figure 19:DustDensScl$ 03 LST and $\text{Ls}=0^{\circ}\text{-}30^{\circ}$ by MRO

03 LST and Ls=30°-60° by DCPAM

Figure 17: DustDensScledOptDep at Figure 20: DustDensScledOptDep at 03 LST and Ls=30°-60° by MRO

Figure 18: DustDensScledOptDep at Figure 21: DustDensScledOptDep at 03 LST and $Ls=60^{\circ}-90^{\circ}$ by DCPAM

03 LST and Ls=60°-90° by MRO

03 LST and Ls=90°-120° by DCPAM 03 LST and Ls=90°-120° by MRO

 $\label{eq:Figure 22: DustDensScledOptDep at Figure 25: DustDensScledOptDep at } Figure \ 25: \ DustDensScledOptDep \ at \\$

 $03 \, \mathrm{LST}$ and $\mathrm{Ls} = 120^{\circ} - 150^{\circ}$ by DCPAM $03 \, \mathrm{LST}$ and $\mathrm{Ls} = 120^{\circ} - 150^{\circ}$ by MRO

Figure 23: DustDensScledOptDep at Figure 26: DustDensScledOptDep at

Figure 24: DustDensScledOptDep at Figure 27: DustDensScledOptDep at $03\,\mathrm{LST}$ and Ls=150°-180° by DCPAM $~03~\mathrm{LST}$ and Ls=150°-180° by MRO

03 LST and $Ls=180^{\circ}\text{-}210^{\circ}$ by DCPAM 03 LST and $Ls=180^{\circ}\text{-}210^{\circ}$ by MRO

 $\label{eq:Figure 28: DustDensScledOptDep at Figure 31: DustDensScledOptDep at } Figure \ 31: \ DustDensScledOptDep \ at \\$

 $03~\mathrm{LST}$ and Ls=210°-240° by DCPAM $~03~\mathrm{LST}$ and Ls=210°-240° by MRO

Figure 29: DustDensScledOptDep at Figure 32: DustDensScledOptDep at

Figure 30: DustDensScledOptDep at Figure 33: DustDensScledOptDep at $03\,\mathrm{LST}$ and Ls=240°-270° by DCPAM $~03~\mathrm{LST}$ and Ls=240°-270° by MRO

Figure 34: DustDensScledOptDep at Figure 37: DustDensScledOptDep at 03 LST and $Ls=270^{\circ}-300^{\circ}$ by DCPAM 03 LST and $Ls=270^{\circ}-300^{\circ}$ by MRO

03 LST and $Ls=300^{\circ}\text{-}330^{\circ}$ by DCPAM 03 LST and $Ls=300^{\circ}\text{-}330^{\circ}$ by MRO

Figure 35: DustDensScledOptDep at Figure 38: DustDensScledOptDep at

Figure 36: DustDensScledOptDep at Figure 39: DustDensScledOptDep at $03\,\mathrm{LST}$ and Ls=330°-360° by DCPAM $~03~\mathrm{LST}$ and Ls=330°-360° by MRO

15 LST and Ls= 0° - 30° by DCPAM

Ls=30-6@ustDensScledOptDep Level latitude

 $\label{eq:Figure 40: DustDensScledOptDep at Figure 43: DustDensScledOptDep at } Figure \ 43: \ DustDensScledOptDep \ at \\$ 15 LST and Ls= 0° - 30° by MRO

15 LST and Ls=30°-60° by DCPAM

Figure 41: DustDensScledOptDep at Figure 44: DustDensScledOptDep at 15 LST and Ls= 30° - 60° by MRO

Figure 42: DustDensScledOptDep at Figure 45: DustDensScledOptDep at 15 LST and Ls= 60° - 90° by DCPAM

15 LST and Ls= 60° - 90° by MRO

Figure 46: DustDensScledOptDep at Figure 49: DustDensScledOptDep at 15 LST and Ls= 90° - 120° by DCPAM 15 LST and Ls= 90° - 120° by MRO

 $15\,\mathrm{LST}$ and Ls=120°-150° by DCPAM $~15~\mathrm{LST}$ and Ls=120°-150° by MRO

Figure 47: DustDensScledOptDep at Figure 50: DustDensScledOptDep at

 $15\,\mathrm{LST}$ and Ls=150°-180° by DCPAM $\,$ 15 LST and Ls=150°-180° by MRO

Figure 48: DustDensScledOptDep at Figure 51: DustDensScledOptDep at

 $Figure \ 52: \ DustDensScledOptDep \ at \quad Figure \ 55: \ DustDensScledOptDep \ at$ 15 LST and $\text{Ls}=180^{\circ}\text{-}210^{\circ}$ by DCPAM 15 LST and $\text{Ls}=180^{\circ}\text{-}210^{\circ}$ by MRO

Figure 53: DustDensScledOptDep at Figure 56: DustDensScledOptDep at $15\,\mathrm{LST}$ and Ls=210°-240° by DCPAM $~15~\mathrm{LST}$ and Ls=210°-240° by MRO

Figure 54: DustDensScledOptDep at Figure 57: DustDensScledOptDep at $15\,\mathrm{LST}$ and Ls=240°-270° by DCPAM $~15~\mathrm{LST}$ and Ls=240°-270° by MRO

 $Figure \ 58: \ DustDensScledOptDep \ at \quad Figure \ 61: \ DustDensScledOptDep \ at$ 15 LST and $Ls=270^{\circ}-300^{\circ}$ by DCPAM 15 LST and $Ls=270^{\circ}-300^{\circ}$ by MRO

 $15\,\mathrm{LST}$ and Ls=300°-330° by DCPAM $~15~\mathrm{LST}$ and Ls=300°-330° by MRO

Figure 59: DustDensScledOptDep at Figure 62: DustDensScledOptDep at

Figure 60: DustDensScledOptDep at Figure 63: DustDensScledOptDep at $15\,\mathrm{LST}$ and Ls=330°-360° by DCPAM $\,$ 15 LST and Ls=330°-360° by MRO

 $\stackrel{-}{\mathrm{PAM}}$

Ls=30-60 latitude CONTOUR INTERVAL = 2.000E+01

Figure 64: U at $L_s=0^{\circ}-30^{\circ}$ by DC- Figure 67: U at $L_s=90^{\circ}-120^{\circ}$ by DC- $\stackrel{\smile}{\mathrm{PAM}}$

Figure 65: U at L_s=30°–60° by DC-PAM

Figure 68: U at L_s=120°–150° by DC-PAM

Figure 66: U at $L_s=60^{\circ}-90^{\circ}$ by DC- Figure 69: U at $L_s=150^{\circ}-180^{\circ}$ by DC- PAM

PAM

Figure 70: U at $L_s=180^{\circ}-210^{\circ}$ by DC-PAM

Figure 73: U at $L_s=270^{\circ}-300^{\circ}$ by DC- $\stackrel{\smile}{\mathrm{PAM}}$

Figure 71: U at L_s=210°–240° by DC-PAM

Figure 74: U at L_s=300°–330° by DC-PAM

Figure 72: U at $L_s=240^{\circ}-270^{\circ}$ by DC- Figure 75: U at $L_s=330^{\circ}-360^{\circ}$ by DC- PAM

PAM

LS=90-120 angular momentum

Figure 76: ANGMOM at $\rm L_s{=}0^{\circ}{-}30^{\circ}$ by DCPAM

Figure 79: ANGMOM at $\rm L_s{=}90^\circ{-}120^\circ$ by DCPAM

Figure 77: ANGMOM at L_s=30°–60° by DCPAM

Figure 80: ANGMOM at $\rm L_s{=}120^\circ{-}150^\circ$ by DCPAM

Figure 78: ANGMOM at Ls=60°–90° by DCPAM

Figure 81: ANGMOM at $L_{\rm s}{=}150^{\circ}{-}180^{\circ}$ by DCPAM

Ls=270-30Qngular momentum latitude CONTOUR INTERVAL = 1.000E+00

 210° by DCPAM

Ls=210-24Qngular momentum

Figure 82: ANGMOM at $L_s=180^{\circ}-$ Figure 85: ANGMOM at $L_s=270^{\circ} 300^{\circ}$ by DCPAM

 240° by DCPAM

Figure 83: ANGMOM at $\rm L_s{=}210^{\circ}{-}$ Figure 86: ANGMOM at $\rm L_s{=}300^{\circ}{-}$ 330° by DCPAM

Figure 84: ANGMOM at L_s =240°- Figure 87: ANGMOM at L_s =330°- 270° by DCPAM

 360° by DCPAM

Figure 88: MSF at $L_s=0^{\circ}-30^{\circ}$ by DC-PAM

 \Diamond latitude CONTOUR INTERVAL = 1.000E+01

Figure 91: MSF at $L_s=90^{\circ}-120^{\circ}$ by DCPAM

 DCPAM

Figure 89: MSF at $\rm L_s{=}30^\circ{-}60^\circ$ by Figure 92: MSF at $\rm L_s{=}120^\circ{-}150^\circ$ by DCPAM

DCPAM

Figure 90: MSF at $L_s=60^{\circ}-90^{\circ}$ by Figure 93: MSF at $L_s=150^{\circ}-180^{\circ}$ by DCPAM

Figure 94: MSF at $L_s=180^{\circ}-210^{\circ}$ by Figure 97: MSF at $L_s=270^{\circ}-300^{\circ}$ by DCPAM

Ls=210-240 stream function latitude CONTOUR INTERVAL = 1.000E+01

 DCPAM

 DCPAM

Figure 95: MSF at L_s=210°-240° by $\,$ Figure 98: MSF at L_s=300°-330° by DCPAM

DCPAM

Figure 96: MSF at $L_s=240^{\circ}-270^{\circ}$ by Figure 99: MSF at $L_s=330^{\circ}-360^{\circ}$ by DCPAM

Figure 100: MSF at $\rm L_s{=}0^\circ{-}30^\circ$ by \rm Figure 103: MSF at $\rm L_s{=}90^\circ{-}120^\circ$ by DCPAM

Ls=30-60_{mass} stream function latitude

 $\widetilde{\mathrm{DCPAM}}$

 $\overline{\text{DCPAM}}$

Figure 101: MSF at L_s=30°–60° by $\,$ Figure 104: MSF at L_s=120°–150° by DCPAM

DCPAM

Figure 102: MSF at L_s =60°-90° by Figure 105: MSF at L_s =150°-180° by DCPAM

Figure 106: MSF at L_s=180°–210° by $\,$ Figure 109: MSF at L_s=270°–300° by DCPAM

Ls=210-240 stream function latitude

DCPAM

 $\overline{\text{DCPAM}}$

Figure 107: MSF at L_s=210°–240° by $\,$ Figure 110: MSF at L_s=300°–330° by DCPAM

DCPAM

Figure 108: MSF at L_s=240°–270° by $\,$ Figure 111: MSF at L_s=330°–360° by DCPAM

Ls=0-30 mass stream function latitude CONTOUR INTERVAL = 1.000E+01

Figure 112: ANGMOM at L_s=0°-30° by DCPAM

Ls=30-60 angular momentum

Figure 115: MSF at $L_s=0^{\circ}-30^{\circ}$ by DCPAM

Figure 113: ANGMOM at $L_s=30^{\circ} 60^{\circ}$ by DCPAM

Figure 116: MSF at $L_s=30^{\circ}-60^{\circ}$ by DCPAM

Figure 114: ANGMOM at $\rm L_s{=}60^\circ{-}$ Figure 117: MSF at $\rm L_s{=}60^\circ{-}90^\circ$ by 90° by DCPAM

DCPAM

Figure 118: ANGMOM at $L_{\rm s}{=}90^{\circ}{-}$ 120° by DCPAM

Ls=120-15Qngular momentum

Figure 121: MSF at $L_s=90^{\circ}-120^{\circ}$ by DCPAM

Figure 119: ANGMOM at $L_{\rm s}{=}120^{\circ}{-}$ 150° by DCPAM

Figure 122: MSF at $L_{\rm s}{=}120^{\circ}{-}150^{\circ}$ by DCPAM

 180° by DCPAM

Figure 120: ANGMOM at $\rm L_s{=}150^{\circ}{-}~$ Figure 123: MSF at $\rm L_s{=}150^{\circ}{-}180^{\circ}$ by DCPAM

Figure 124: ANGMOM at $L_s{=}180^{\circ}{-}$ 210° by DCPAM

Ls=210-24Qngular momentum

Figure 127: MSF at $L_s=180^{\circ}-210^{\circ}$ by DCPAM

Figure 125: ANGMOM at $L_s=210^{\circ} 240^{\circ}$ by DCPAM

Figure 128: MSF at L_s=210°-240° by DCPAM

Figure 126: ANGMOM at $\rm L_s{=}240^{\circ}{-}~$ Figure 129: MSF at $\rm L_s{=}240^{\circ}{-}270^{\circ}$ by 270° by DCPAM

DCPAM

Figure 130: ANGMOM at L_s =270°- 300° by DCPAM

Ls=300-33Qngular momentum

Figure 133: MSF at $L_s=270^{\circ}-300^{\circ}$ by DCPAM

Figure 131: ANGMOM at $L_s=300^{\circ} 330^{\circ}$ by DCPAM

Figure 134: MSF at $L_{\rm s}{=}300^{\circ}{-}330^{\circ}$ by DCPAM

Figure 132: ANGMOM at $\rm L_s{=}330^\circ{-}$ Figure 135: MSF at $\rm L_s{=}330^\circ{-}360^\circ$ by 360° by DCPAM

DCPAM

 DCPAM

Ls=30-60 temperature latitude CONTOUR INTERVAL = 1.000E+01

Figure 136: Temp at $L_s=0^{\circ}-30^{\circ}$ by Figure 139: Temp at $L_s=90^{\circ}-120^{\circ}$ by DCPAM

 DCPAM

Figure 137: Temp at L_s=30°–60° by $\,$ Figure 140: Temp at L_s=120°–150° by DCPAM

Figure 138: Temp at $L_s=60^{\circ}-90^{\circ}$ by Figure 141: Temp at $L_s=150^{\circ}-180^{\circ}$ by DCPAM

DCPAM

 DCPAM

Ls=210-240 temperature latitude CONTOUR INTERVAL = 1.000E+01

Figure 142: Temp at $L_s=180^{\circ}-210^{\circ}$ by Figure 145: Temp at $L_s=270^{\circ}-300^{\circ}$ by DCPAM

 DCPAM

Figure 143: Temp at L_s=210°–240° by $\,$ Figure 146: Temp at L_s=300°–330° by DCPAM

DCPAM

Figure 144: Temp at L_s =240°-270° by Figure 147: Temp at L_s =330°-360° by DCPAM

Figure 148: QH2OVap at $\rm L_s{=}0^{\circ}{-}30^{\circ}$ by DCPAM

Figure 151: QH2OVap at L_s=90°– 120° by DCPAM

Figure 149: QH2OVap at L_s=30°–60° by DCPAM

Figure 152: QH2OVap at L_s=120°–150° by DCPAM

Figure 150: QH2OVap at L_s=60°–90° by DCPAM

Figure 153: QH2OVap at L_s=150°– 180° by DCPAM

 210° by DCPAM

Ls=210-240 specific humidity Level

Figure 154: QH2OVap at L_s=180°– Figure 157: QH2OVap at L_s=270°– 300° by DCPAM

 240° by DCPAM

Figure 155: QH2OVap at L_s=210°– Figure 158: QH2OVap at L_s=300°– 330° by DCPAM

 270° by DCPAM

Figure 156: QH2OVap at L_s =240°- Figure 159: QH2OVap at L_s =330°- 360° by DCPAM

Figure 160: QH2OLiq at L_s=0°–30° by DCPAM

Figure 163: QH2OLiq at L_s=90°–120° by DCPAM

Figure 161: QH2OLiq at L_s=30°–60° by DCPAM

Figure 164: QH2OLiq at L_s=120°–150° by DCPAM

Figure 162: QH2OLiq at L_s=60°–90° by DCPAM

Figure 165: QH2OLiq at $\rm L_s{=}150^\circ{-}180^\circ$ by DCPAM

 210° by DCPAM

Ls=210-240 QH2OLiq Level

Figure 166: QH2OLiq at L_s=180°– Figure 169: QH2OLiq at L_s=270°– 300° by DCPAM

 240° by DCPAM

Figure 167: QH2OLiq at L_s=210°– Figure 170: QH2OLiq at L_s=300°– 330° by DCPAM

Figure 168: QH2OLiq at L_s =240°- Figure 171: QH2OLiq at L_s =330°- 270° by DCPAM

 360° by DCPAM

Figure 172: QH2OSol at $\rm L_s{=}0^\circ{-}30^\circ$ by DCPAM

Es=30-60 QH2OSol

Figure 175: QH2OSol at L_s=90°–120° by DCPAM

Figure 173: QH2OSol at L_s=30°–60° by DCPAM

Figure 176: QH2OSol at L_s=120°–150° by DCPAM

Figure 174: QH2OSol at L_s=60°–90° by DCPAM

Figure 177: QH2OSol at Ls=150°– 180° by DCPAM

 210° by DCPAM

Ls=210-240 QH20Sol

Figure 178: QH2OSol at L_s=180°– Figure 181: QH2OSol at L_s=270°– 300° by DCPAM

 240° by DCPAM

Figure 179: QH2OSol at L_s=210°– Figure 182: QH2OSol at L_s=300°– 330° by DCPAM

 270° by DCPAM

Figure 180: QH2OSol at $\rm L_s{=}240^{\circ}{-}$ Figure 183: QH2OSol at $\rm L_s{=}330^{\circ}{-}$ 360° by DCPAM

Figure 184: RH at $L_s=0^{\circ}-30^{\circ}$ by DC-PAM

Ls=30-60 relative humidity latitude CONTOUR INTERVAL = 5.000E-02

Figure 187: RH at $L_s=90^{\circ}-120^{\circ}$ by DCPAM

 DCPAM

Figure 185: RH at $\rm L_s{=}30^\circ{-}60^\circ$ by Figure 188: RH at $\rm L_s{=}120^\circ{-}150^\circ$ by DCPAM

Figure 186: RH at $L_s=60^{\circ}-90^{\circ}$ by Figure 189: RH at $L_s=150^{\circ}-180^{\circ}$ by DCPAM

DCPAM

 DCPAM

Ls=210-240 relative humidity latitude CONTOUR INTERVAL = 5.000E-02

Figure 190: RH at $L_s=180^{\circ}-210^{\circ}$ by Figure 193: RH at $L_s=270^{\circ}-300^{\circ}$ by DCPAM

 DCPAM

Figure 191: RH at Ls=210°-240° by $\,$ Figure 194: RH at Ls=300°-330° by DCPAM

Figure 192: RH at L_s=240°–270° by Figure 195: RH at L_s=330°–360° by DCPAM

DCPAM

Figure 196: H_2O cloud radius at Figure 199: H_2O cloud radius at $L_{\rm s}{=}0^{\circ}{-}30^{\circ}$ by DCPAM

Ls=30-69Mars H2O Cloud Radius

 $L_s=90^{\circ}-120^{\circ}$ by DCPAM

 $L_s=30^{\circ}-60^{\circ}$ by DCPAM

Figure 197: H_2O cloud radius at Figure 200: H_2O cloud radius at $L_s=120^{\circ}-150^{\circ}$ by DCPAM

 L_s =60°-90° by DCPAM

Figure 198: H_2O cloud radius at Figure 201: H_2O cloud radius at $\rm L_s{=}150^{\circ}{-}180^{\circ}$ by DCPAM

Figure 202: H_2O cloud radius at Figure 205: H_2O cloud radius at $L_s=180^{\circ}-210^{\circ}$ by DCPAM

Ls=210-240 H20 Cloud Radius

 $L_s=270^{\circ}-300^{\circ}$ by DCPAM

 $L_s=210^{\circ}-240^{\circ}$ by DCPAM

Figure 203: H_2O cloud radius at Figure 206: H_2O cloud radius at $L_s=300^{\circ}-330^{\circ}$ by DCPAM

 L_s =240°-270° by DCPAM

Figure 204: H_2O cloud radius at Figure 207: H_2O cloud radius at $\rm L_s{=}330^\circ{-}360^\circ$ by DCPAM

Ls=30-60 QDust latitude

 DCPAM

Figure 209: QDust at $\rm L_s{=}30^\circ{-}60^\circ$ by $\,$ Figure 212: QDust at $\rm L_s{=}120^\circ{-}150^\circ$ by DCPAM

Figure 210: QDust at $\rm L_s{=}60^\circ{-}90^\circ$ by \rm Figure 213: QDust at $\rm L_s{=}150^\circ{-}180^\circ$ DCPAM

by DCPAM

Figure 214: QDust at Ls=180°–210° by DCPAM

Ls=210-240 QDust

Figure 217: QDust at Ls=270°–300° by DCPAM

Figure 215: QDust at Ls=210°–240° by DCPAM

Figure 218: QDust at $\rm L_s{=}300^{\circ}{-}330^{\circ}$ by DCPAM

Figure 216: QDust at Ls=240°–270° by DCPAM

Figure 219: QDust at Ls=330°–360° by DCPAM

Figure 220: $T_{\rm s}$ at 02 LST by DCPAM

surface temperature

Figure 222: $T_{\rm s}$ at 02 LST by MGS

Figure 221: $T_{\rm s}$ at 14 LST by DCPAM

Figure 223: $T_{\rm s}$ at 14 LST by MGS

air_temperature_at_02_LST

Figure 224: T at 18 Pa and at 02 LST by DCPAM

(degrees_north) temperature

Figure 228: T at 18 Pa and at 02 LST by MGS

Figure 225: T at 50 Pa and at 02 LST by DCPAM

Figure 229: T at 50 Pa and at 02 LST by MGS

Figure 226: T at 136 Pa and at 02 LST by DCPAM

Figure 230: T at 136 Pa and at 02 LST by MGS

41

Figure 227: T at 370 Pa and at 02 LST by DCPAM

Figure 231: T at 370 Pa and at 02 LST by MGS

(degrees_north) air_temperature_at_14_LST

Figure 232: T at 18 Pa and at 14 LST by DCPAM

Figure 236: T at 18 Pa and at 14 LST by MGS

Figure 233: T at 50 Pa and at 14 LST by DCPAM $\,$

Figure 237: T at 50 Pa and at 14 LST by MGS

Figure 234: T at 136 Pa and at 14 LST by DCPAM

Figure 238: T at 136 Pa and at 14 LST by MGS

42

Figure 235: T at 370 Pa and at 14 LST by DCPAM

Figure 239: T at 370 Pa and at 14 LST by MGS

Ls= 0° - 30° by DCPAM

Ls=30-60 temperature latitude

Figure 240: Temp at 02 LST and Figure 243: Temp at 02 LST and $Ls=0^{\circ}-30^{\circ}$ by MGS

Ls=30°-60° by DCPAM

Figure 241: Temp at 02 LST and Figure 244: Temp at 02 LST and Ls=30°-60° by MGS

Figure 242: Temp at 02 LST and Figure 245: Temp at 02 LST and Ls=60°-90° by DCPAM

Ls=60°-90° by MGS

Ls= 90° - 120° by DCPAM

Ls=120-150 temperature latitude

Figure 246: Temp at 02 LST and Figure 249: Temp at 02 LST and Ls= 90° - 120° by MGS

Figure 247: Temp at 02 LST and Figure 250: Temp at 02 LST and Ls= 120° - 150° by DCPAM

Ls=120°-150° by MGS

Figure 248: Temp at 02 LST and Figure 251: Temp at 02 LST and Ls=150°-180° by DCPAM

Ls=150°-180° by MGS

Ls= 180° - 210° by DCPAM

Ls=210-240 temperature 9 10² latitude

Figure 252: Temp at 02 LST and Figure 255: Temp at 02 LST and Ls= 180° - 210° by MGS

Figure 253: Temp at 02 LST and Figure 256: Temp at 02 LST and Ls=210°-240° by DCPAM

Ls=210°-240° by MGS

Figure 254: Temp at 02 LST and Figure 257: Temp at 02 LST and Ls= 240° - 270° by DCPAM

Ls=240°-270° by MGS

Ls= 270° - 300° by DCPAM

Ls=300-330 temperature e 102 latitude

Figure 258: Temp at 02 LST and Figure 261: Temp at 02 LST and Ls= 270° - 300° by MGS

Figure 259: Temp at 02 LST and Figure 262: Temp at 02 LST and Ls=300°-330° by DCPAM

Ls= 300° - 330° by MGS

Figure 260: Temp at 02 LST and Figure 263: Temp at 02 LST and Ls= 330° - 360° by DCPAM

Ls=330°-360° by MGS

Ls= 0° - 30° by DCPAM

Ls=30-60 temperature latitude

Figure 264: Temp at 14 LST and Figure 267: Temp at 14 LST and $Ls=0^{\circ}-30^{\circ}$ by MGS

Figure 265: Temp at 14 LST and Figure 268: Temp at 14 LST and Ls= 30° - 60° by DCPAM

Ls= 30° - 60° by MGS

Ls=60°-90° by DCPAM

Figure 266: Temp at 14 LST and Figure 269: Temp at 14 LST and Ls=60°-90° by MGS

Ls= 90° - 120° by DCPAM

Ls=120-150 temperature latitude

Figure 270: Temp at $14\ \mathrm{LST}$ and Figure 273: Temp at $14\ \mathrm{LST}$ and Ls= 90° - 120° by MGS

Ls= 120° - 150° by DCPAM

Figure 271: Temp at 14 LST and Figure 274: Temp at 14 LST and Ls= 120° - 150° by MGS

Figure 272: Temp at 14 LST and Figure 275: Temp at 14 LST and Ls=150°-180° by DCPAM

Ls=150°-180° by MGS

Ls= 180° - 210° by DCPAM

Ls=210-240 temperature e 102 latitude

Figure 276: Temp at 14 LST and Figure 279: Temp at 14 LST and Ls= 180° - 210° by MGS

Ls= 210° - 240° by DCPAM

Figure 277: Temp at 14 LST and Figure 280: Temp at 14 LST and Ls= 210° - 240° by MGS

Figure 278: Temp at 14 LST and Figure 281: Temp at 14 LST and Ls= 240° - 270° by DCPAM

Ls=240°-270° by MGS

Ls= 270° - 300° by DCPAM

Ls=300-330 temperature e 102 latitude

Figure 282: Temp at 14 LST and Figure 285: Temp at 14 LST and Ls= 270° - 300° by MGS

Figure 283: Temp at 14 LST and Figure 286: Temp at 14 LST and Ls= 300° - 330° by DCPAM

Ls= 300° - 330° by MGS

Ls=330°-360° by DCPAM

Figure 284: Temp at 14 LST and Figure 287: Temp at 14 LST and Ls=330°-360° by MGS

Ls= 0° - 30° by DCPAM

Ls=30-60 temperature latitude

Figure 288: Temp at 03 LST and Figure 291: Temp at 03 LST and $Ls=0^{\circ}-30^{\circ}$ by MRO

Ls=30°-60° by DCPAM

Figure 289: Temp at 03 LST and Figure 292: Temp at 03 LST and Ls= 30° - 60° by MRO

Ls=60°-90° by DCPAM

Figure 290: Temp at 03 LST and Figure 293: Temp at 03 LST and Ls=60°-90° by MRO

Ls= 90° - 120° by DCPAM

Ls=120-150 temperature latitude

Figure 294: Temp at 03 LST and Figure 297: Temp at 03 LST and Ls=90°-120° by MRO

Figure 295: Temp at 03 LST and Figure 298: Temp at 03 LST and Ls=120°-150° by DCPAM

Ls=120°-150° by MRO

Ls=150°-180° by DCPAM

Figure 296: Temp at 03 LST and Figure 299: Temp at 03 LST and Ls=150°-180° by MRO

Ls= 180° - 210° by DCPAM

Ls=210-240 temperature Level latitude

Figure 300: Temp at 03 LST and Figure 303: Temp at 03 LST and Ls= 180° - 210° by MRO

Ls=210°-240° by DCPAM

Figure 301: Temp at 03 LST and Figure 304: Temp at 03 LST and Ls=210°-240° by MRO

Figure 302: Temp at 03 LST and Figure 305: Temp at 03 LST and Ls=240°-270° by DCPAM

Ls=240°-270° by MRO

Ls= 270° - 300° by DCPAM

Ls=300-330 temperature 10-Level latitude

Figure 306: Temp at 03 LST and Figure 309: Temp at 03 LST and Ls= 270° - 300° by MRO

Ls=300°-330° by DCPAM

Figure 307: Temp at 03 LST and Figure 310: Temp at 03 LST and Ls=300°-330° by MRO

Ls=330°-360° by DCPAM

Figure 308: Temp at 03 LST and Figure 311: Temp at 03 LST and Ls=330°-360° by MRO

Ls= 0° - 30° by DCPAM

Ls=30-60 temperature latitude

Figure 312: Temp at 15 LST and Figure 315: Temp at 15 LST and $Ls=0^{\circ}-30^{\circ}$ by MRO

Ls=30°-60° by DCPAM

Figure 313: Temp at 15 LST and Figure 316: Temp at 15 LST and Ls= 30° - 60° by MRO

Ls=60°-90° by DCPAM

Figure 314: Temp at 15 LST and Figure 317: Temp at 15 LST and Ls=60°-90° by MRO

Ls= 90° - 120° by DCPAM

Ls=120-150 temperature latitude

Figure 318: Temp at 15 LST and Figure 321: Temp at 15 LST and Ls=90°-120° by MRO

Figure 319: Temp at 15 LST and Figure 322: Temp at 15 LST and Ls=120°-150° by DCPAM

Ls=120°-150° by MRO

Ls=150°-180° by DCPAM

Figure 320: Temp at 15 LST and Figure 323: Temp at 15 LST and Ls=150°-180° by MRO

Ls= 180° - 210° by DCPAM

Ls=210-240 temperature Level latitude

Figure 324: Temp at 15 LST and Figure 327: Temp at 15 LST and Ls= 180° - 210° by MRO

Ls=210°-240° by DCPAM

Figure 325: Temp at 15 LST and Figure 328: Temp at 15 LST and Ls=210°-240° by MRO

Figure 326: Temp at 15 LST and Figure 329: Temp at 15 LST and Ls=240°-270° by DCPAM

Ls=240°-270° by MRO

Ls= 270° - 300° by DCPAM

Ls=300-330 temperature 10-Level latitude

Figure 330: Temp at 15 LST and Figure 333: Temp at 15 LST and Ls= 270° - 300° by MRO

Figure 331: Temp at 15 LST and Figure 334: Temp at 15 LST and Ls=300°-330° by DCPAM

Ls=300°-330° by MRO

Figure 332: Temp at 15 LST and Figure 335: Temp at 15 LST and Ls=330°-360° by DCPAM

Ls=330°-360° by MRO

Figure 336: Water vapor column density by DCPAM (precipitable micron meter) $\,$

Figure 337: Column integrated water vapor by DCPAM $\,$

Figure 338: Column integrated water vapor by DCPAM

Figure 339: Column integrated water vapor observed by MGS-TES in MY25 $\,$

Figure 340: Water ice column density by DCPAM (precipitable micron meter)

Figure 341: Optical depth of water ice by DCPAM

Figure 342: Optical depth of water ice by DCPAM

Figure 343: Optical depth of water ice observed by MGS-TES in ${\rm MY25}$

Figure 344: $\rm H_2O$ cloud radius by DCPAM

Figure 345: Prec. water at 02 LST and Ls=0°-30° by DCPAM

Figure 346: Prec. water at 02 LST and Ls=30°-60° by DCPAM

Figure 347: Prec. water at 02 LST and Ls=60°-90° by DCPAM

Figure 348: Prec. water at 02 LST and Ls=90°-120° by DCPAM

Figure 349: Prec. water at 02 LST and Ls=120°-150° by DCPAM

Figure 350: Prec. water at 02 LST and Ls=150°-180° by DCPAM

Figure 351: Prec. water at 02 LST and Ls=180°-210° by DCPAM

Figure 352: Prec. water at 02 LST and Ls=210°-240° by DCPAM

Figure 353: Prec. water at 02 LST and Ls=240°-270° by DCPAM

Figure 354: Prec. water at 02 LST and Ls=270°-300° by DCPAM

Figure 355: Prec. water at 02 LST and Ls=300°-330° by DCPAM

Figure 356: Prec. water at 02 LST and Ls=330°-360° by DCPAM

Figure 357: Prec. water at 14 LST and Ls=0°-30° by DCPAM

Figure 358: Prec. water at 14 LST and Ls=30°-60° by DCPAM

Figure 359: Prec. water at 14 LST and Ls=60°-90° by DCPAM

Figure 360: Prec. water at 14 LST and Ls=90°-120° by DCPAM

Figure 361: Prec. water at 14 LST and Ls=120°-150° by DCPAM

Figure 362: Prec. water at 14 LST and Ls=150°-180° by DCPAM

Figure 363: Prec. water at 14 LST and Ls= 180° - 210° by DCPAM

Figure 364: Prec. water at 14 LST and Ls=210°-240° by DCPAM

Figure 365: Prec. water at 14 LST and Ls=240°-270° by DCPAM

Figure 366: Prec. water at 14 LST and Ls=270°-300° by DCPAM

Figure 367: Prec. water at 14 LST and Ls=300°-330° by DCPAM

Figure 368: Prec. water at 14 LST and Ls=330°-360° by DCPAM

depth at 02 LST and Ls= 0° - 30° by DCPAM

Figure 369: H₂O ice cloud optical Figure 372: H₂O ice cloud optical depth at 02 LST and Ls= 0° - 30° by MGS

depth at 02 LST and Ls= 30° - 60° by DCPAM

Figure 370: H₂O ice cloud optical Figure 373: H₂O ice cloud optical depth at 02 LST and Ls= 30° - 60° by MGS

depth at 02 LST and Ls= 60° - 90° by DCPAM

Figure 371: H₂O ice cloud optical Figure 374: H₂O ice cloud optical depth at 02 LST and Ls= 60° - 90° by MGS

depth at 02 LST and Ls= 90° - 120° by DCPAM

Figure 375: H₂O ice cloud optical Figure 378: H₂O ice cloud optical depth at 02 LST and Ls= 90° - 120° by MGS

Figure 376: H₂O ice cloud optical Figure 379: H₂O ice cloud optical depth at 02 LST and Ls= 120° - 150° by DCPAM

depth at 02 LST and Ls= 120° - 150° by MGS

Figure 377: H₂O ice cloud optical Figure 380: H₂O ice cloud optical depth at 02 LST and Ls= 150° - 180° by DCPAM

depth at 02 LST and Ls=150°-180° by MGS

depth at 02 LST and Ls= 180° - 210° by DCPAM

Figure 381: H₂O ice cloud optical Figure 384: H₂O ice cloud optical depth at 02 LST and Ls= 180° - 210° by MGS

depth at 02 LST and Ls= 210° - 240° by DCPAM

Figure 382: H₂O ice cloud optical Figure 385: H₂O ice cloud optical depth at 02 LST and Ls= 210° - 240° by MGS

depth at 02 LST and Ls= 240° - 270° by DCPAM

Figure 383: H₂O ice cloud optical Figure 386: H₂O ice cloud optical depth at 02 LST and Ls=240°-270° by MGS

Figure 387: H₂O ice cloud optical depth at 02 LST and Ls= 270° - 300° by DCPAM

Figure 390: H₂O ice cloud optical depth at 02 LST and Ls= 270° - 300° by MGS

Figure 388: H₂O ice cloud optical depth at 02 LST and Ls= 300° - 330° by DCPAM

Figure 391: H₂O ice cloud optical depth at 02 LST and Ls=300°-330° by MGS

depth at 02 LST and Ls= 330° - 360° by DCPAM

Figure 389: H₂O ice cloud optical Figure 392: H₂O ice cloud optical depth at 02 LST and Ls=330°-360° by MGS

depth at 14 LST and Ls= 0° - 30° by DCPAM

Figure 393: H₂O ice cloud optical Figure 396: H₂O ice cloud optical depth at 14 LST and Ls= 0° - 30° by MGS

Figure 394: H₂O ice cloud optical Figure 397: H₂O ice cloud optical depth at 14 LST and Ls= 30° - 60° by DCPAM

depth at 14 LST and Ls= 30° - 60° by MGS

depth at 14 LST and Ls= 60° - 90° by DCPAM

Figure 395: H₂O ice cloud optical Figure 398: H₂O ice cloud optical depth at 14 LST and Ls= 60° - 90° by MGS

depth at 14 LST and Ls= 90° - 120° by DCPAM

Figure 399: H₂O ice cloud optical Figure 402: H₂O ice cloud optical depth at 14 LST and Ls= 90° - 120° by MGS

Figure 400: H₂O ice cloud optical depth at 14 LST and Ls= 120° - 150° by DCPAM

Figure 403: H₂O ice cloud optical depth at 14 LST and Ls=120°-150° by MGS

depth at 14 LST and Ls= 150° - 180° by DCPAM

Figure 401: H₂O ice cloud optical Figure 404: H₂O ice cloud optical depth at 14 LST and Ls=150°-180° by MGS

depth at 14 LST and Ls=180°-210° by DCPAM

Figure 405: H₂O ice cloud optical Figure 408: H₂O ice cloud optical depth at 14 LST and Ls= 180° - 210° by MGS

Figure 406: H₂O ice cloud optical depth at 14 LST and Ls= 210° - 240° by DCPAM

Figure 409: H₂O ice cloud optical depth at 14 LST and Ls=210°-240° by MGS

depth at 14 LST and Ls= 240° - 270° by DCPAM

Figure 407: H₂O ice cloud optical Figure 410: H₂O ice cloud optical depth at 14 LST and Ls=240°-270° by MGS

Figure 411: H₂O ice cloud optical depth at 14 LST and Ls= 270° - 300° by DCPAM

Figure 414: H₂O ice cloud optical depth at 14 LST and Ls= 270° - 300° by MGS

Figure 412: H₂O ice cloud optical depth at 14 LST and Ls= 300° - 330° by DCPAM

Figure 415: H₂O ice cloud optical depth at 14 LST and Ls=300°-330° by MGS

Figure 413: H₂O ice cloud optical Figure 416: H₂O ice cloud optical depth at 14 LST and Ls= 330° - 360° by DCPAM

depth at 14 LST and Ls=330°-360° by MGS

Figure 417: Snow on the ground by DCPAM

Figure 418: Surface pressure at Viking lander 1 site by DCPAM (black) and observation (diurnal mean, red)

Figure 419: Surface pressure at Viking lander 2 site by DCPAM (black) and observation (diurnal mean, red)

Figure 420: Surface pressure at Mars Pathfinder site by DCPAM (black) and observation (red)