Figures

Some results of DCPAM are compared with MGS ${ }^{1}-\mathrm{TES}^{2}$ and $\mathrm{MRO}^{3}-\mathrm{MCS}^{4}$ data.

[^0]

Figure 1: Daily mean dust optical depth prescribed in DCPAM

Figure 2: Double of dust optical depth observed by MGS-TES in MY26

Figure 3: Daily mean maximum height of dust distribution prescribed in DCPAM

Figure 4: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 5: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 6: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 7: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 8: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 9: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 10: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 11: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 12: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-270^{\circ}$ by DCPAM

Figure 13: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 14: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 15: DustDensScledOptDep at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 16: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 19: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by MRO

Figure 17: DustDensScledOptDep at Figure 20: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by DCPAM
 03 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by MRO

Figure 18: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 21: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by MRO

Figure 22: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 25: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by MRO

Figure 23: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 26: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by MRO

Figure 24: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 27: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by MRO

Figure 28: DustDensScledOptDep at Figure 31: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by DCPAM 03 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by MRO

Figure 29: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 32: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by MRO

Figure 30: DustDensScledOptDep at Figure 33: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by DCPAM 03 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by MRO

Figure 34: DustDensScledOptDep at Figure 37: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by DCPAM 03 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by MRO

Figure 35: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 38: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by MRO

Figure 36: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 39: DustDensScledOptDep at 03 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by MRO

Figure 40: DustDensScledOptDep at Figure 43: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by DCPAM
 15 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by MRO

Figure 41: DustDensScledOptDep at Figure 44: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by DCPAM 15 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by MRO

Figure 42: DustDensScledOptDep at Figure 45: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by DCPAM 15 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by MRO

Figure 46: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 49: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by MRO

Figure 47: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 50: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by MRO

Figure 48: DustDensScledOptDep at Figure 51: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by DCPAM 15 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by MRO

Figure 52: DustDensScledOptDep at Figure 55: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by DCPAM 15 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by MRO

Figure 53: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 56: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by MRO

Figure 54: DustDensScledOptDep at Figure 57: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by DCPAM 15 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by MRO

Figure 58: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 59: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 62: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by MRO

Figure 60: DustDensScledOptDep at Figure 63: DustDensScledOptDep at 15 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by DCPAM 15 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by MRO

Figure 64: U at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DC- Figure 67: U at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-120^{\circ}$ by DC-

PAM

PAM

Figure 65: U at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 66: U at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DC PAM

Figure 68: U at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-150^{\circ}$ by DC PAM

Figure 69: U at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 70: U at $\mathrm{L}_{\mathrm{s}}=180^{\circ}-210^{\circ}$ by DC- Figure 73 : U at $\mathrm{L}_{\mathrm{s}}=270^{\circ}-300^{\circ}$ by DC-

PAM

PAM

Figure 71: U at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-240^{\circ}$ by DC PAM

Figure 72: U at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-270^{\circ}$ by DC PAM

Figure 74: U at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-330^{\circ}$ by DC PAM

Figure 75: U at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 76: ANGMOM at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 77: ANGMOM at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 78: ANGMOM at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 79: ANGMOM at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-$ 120° by DCPAM

Figure 80: ANGMOM at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-$ 150° by DCPAM

Figure 81: ANGMOM at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-$ 180° by DCPAM

Figure 82: ANGMOM at $\mathrm{L}_{\mathrm{s}}=180^{\circ}-$ 210° by DCPAM

Figure 83: ANGMOM at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-$ 240° by DCPAM

Figure 84: ANGMOM at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-$ 270° by DCPAM

Figure 85: ANGMOM at $\mathrm{L}_{\mathrm{s}}=270^{\circ}{ }_{-}$ 300° by DCPAM

Figure 86: ANGMOM at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-$ 330° by DCPAM

Figure 87: ANGMOM at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-$ 360° by DCPAM

Figure 88: MSF at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 89: MSF at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by Figure 92 : MSF at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-150^{\circ}$ by

Figure 91: MSF at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-120^{\circ}$ by DCPAM

DCPAM

Figure 90: MSF at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

DCPAM

Figure 93: MSF at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 94: MSF at $\mathrm{L}_{\mathrm{s}}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 95: MSF at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-240^{\circ}$ by

DCPAM

Figure 96: MSF at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-270^{\circ}$ by DCPAM

Figure 97: MSF at $\mathrm{L}_{\mathrm{s}}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 98: MSF at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 99: MSF at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 100: MSF at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 103: MSF at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 101: MSF at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 102: MSF at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 104: MSF at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 105: MSF at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 106: MSF at $\mathrm{L}_{\mathrm{s}}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 107: MSF at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 108: MSF at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-270^{\circ}$ by DCPAM

Figure 109: MSF at $\mathrm{L}_{\mathrm{s}}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 110: MSF at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 111: MSF at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 112: ANGMOM at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 113: ANGMOM at $\mathrm{L}_{\mathrm{s}}=30^{\circ}$ 60° by DCPAM

Figure 114: ANGMOM at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-$ 90° by DCPAM

Figure 115: MSF at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 116: MSF at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 117: MSF at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 118: ANGMOM at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-$ 120° by DCPAM

Figure 119: ANGMOM at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-$ 150° by DCPAM

Figure 120: ANGMOM at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-$ 180° by DCPAM

Figure 121: MSF at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 122: MSF at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 123: MSF at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 124: ANGMOM at $\mathrm{L}_{\mathrm{s}}=180^{\circ}{ }^{-}$ 210° by DCPAM

Figure 125: ANGMOM at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-$ 240° by DCPAM

Figure 126: ANGMOM at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-$ 270° by DCPAM

Figure 127: MSF at $\mathrm{L}_{\mathrm{s}}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 128: MSF at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 129: MSF at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-270^{\circ}$ by DCPAM

Figure 130: ANGMOM at $\mathrm{L}_{\mathrm{s}}=270^{\circ}-$ 300° by DCPAM

Figure 131: ANGMOM at $\mathrm{L}_{\mathrm{s}}=300^{\circ}$ 330° by DCPAM

Figure 132: ANGMOM at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-$ 360° by DCPAM

Figure 133: MSF at $\mathrm{L}_{\mathrm{s}}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 134: MSF at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 135: MSF at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 136: Temp at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 137: Temp at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by Figure 140: Temp at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 138: Temp at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 139: Temp at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-120^{\circ}$ by DCPAM

DCPAM

Figure 141: Temp at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 142: Temp at $\mathrm{L}_{\mathrm{s}}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 143: Temp at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 144: Temp at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-270^{\circ}$ by DCPAM

Figure 145: Temp at $\mathrm{L}_{\mathrm{s}}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 146: Temp at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 147: Temp at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 148: QH2OVap at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 149: QH2OVap at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 150: QH2OVap at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 151: QH2OVap at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-$ 120° by DCPAM

Figure 152: QH2OVap at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-$ 150° by DCPAM

Figure 153: QH2OVap at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-$ 180° by DCPAM

Figure 154: QH2OVap at $L_{s}=180^{\circ}-$ Figure 157: QH2OVap at $L_{s}=270^{\circ}-$ 210° by DCPAM

Figure 155: QH2OVap at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-$ 240° by DCPAM

Figure 156: QH2OVap at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-$ 270° by DCPAM

Figure 158: QH2OVap at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-$ 330° by DCPAM

Figure 159: QH2OVap at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-$ 360° by DCPAM

Figure 160: QH2OLiq at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 161: QH2OLiq at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 162: QH2OLiq at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 163: QH2OLiq at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 164: QH2OLiq at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-$ 150° by DCPAM

Figure 165: QH 2 OLiq at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-$ 180° by DCPAM

Figure 166: QH2OLiq at $L_{s}=180^{\circ}$ - Figure 169: QH2OLiq at $L_{s}=270^{\circ}-$ 210° by DCPAM

300° by DCPAM

Figure 167: QH2OLiq at $\mathrm{L}_{\mathrm{s}}=210^{\circ}{ }_{-}$Figure 170: QH2OLiq at $\mathrm{L}_{\mathrm{s}}=300^{\circ}{ }_{-}$ 240° by DCPAM

Figure 168: QH2OLiq at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-$ 270° by DCPAM
330° by DCPAM

Figure 171: QH 2 OLiq at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-$ 360° by DCPAM

Figure 172: QH 2 OSol at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 173: QH2OSol at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 174: QH2OSol at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 175: QH2OSol at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 176: QH 2 OSol at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-$ 150° by DCPAM

Figure 177: QH 2 OSol at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-$ 180° by DCPAM

Figure 178: QH2OSol at $\mathrm{L}_{\mathrm{s}}=180^{\circ}$ 210° by DCPAM

Figure 181: QH 2 OSol at $\mathrm{L}_{\mathrm{s}}=270^{\circ}-$ 300° by DCPAM

Figure 179: QH 2 OSol at $\mathrm{L}_{\mathrm{s}}=210^{\circ}$ 240° by DCPAM

Figure 180: QH 2 OSol at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-$ 270° by DCPAM

Figure 182: QH 2 OSol at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-$ 330° by DCPAM

Figure 183: QH 2 OSol at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-$ 360° by DCPAM

Figure 184: RH at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 185: RH at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by Figure 188: RH at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 186: RH at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by Figure 189: RH at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 187: RH at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-120^{\circ}$ by DCPAM
 DCPAM
 DCPAM

Figure 190: RH at $\mathrm{L}_{\mathrm{s}}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 191: RH at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-240^{\circ}$ by Figure 194: RH at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 192: RH at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-270^{\circ}$ by DCPAM

Figure 193: RH at $\mathrm{L}_{\mathrm{s}}=270^{\circ}-300^{\circ}$ by DCPAM
 DCPAM

Figure 195: RH at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 196: $\mathrm{H}_{2} \mathrm{O}$ cloud radius at Figure 199: $\mathrm{H}_{2} \mathrm{O}$ cloud radius at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 197: $\mathrm{H}_{2} \mathrm{O}$ cloud radius at Figure 200: $\mathrm{H}_{2} \mathrm{O}$ cloud radius at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by DCPAM
 $\mathrm{L}_{\mathrm{s}}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 198: $\mathrm{H}_{2} \mathrm{O}$ cloud radius at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 201: $\mathrm{H}_{2} \mathrm{O}$ cloud radius at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 202: $\mathrm{H}_{2} \mathrm{O}$ cloud radius at $\mathrm{L}_{\mathrm{s}}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 203: $\mathrm{H}_{2} \mathrm{O}$ cloud radius a $\mathrm{L}_{\mathrm{s}}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 204: $\mathrm{H}_{2} \mathrm{O}$ cloud radius at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-270^{\circ}$ by DCPAM

 $\mathrm{L}_{\mathrm{s}}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 207: $\mathrm{H}_{2} \mathrm{O}$ cloud radius at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 208: QDust at $\mathrm{L}_{\mathrm{s}}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 209: QDust at $\mathrm{L}_{\mathrm{s}}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 210: QDust at $\mathrm{L}_{\mathrm{s}}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 211: QDust at $\mathrm{L}_{\mathrm{s}}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 212: QDust at $\mathrm{L}_{\mathrm{s}}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 213: QDust at $\mathrm{L}_{\mathrm{s}}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 214: QDust at $\mathrm{L}_{\mathrm{s}}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 215: QDust at $\mathrm{L}_{\mathrm{s}}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 216: QDust at $\mathrm{L}_{\mathrm{s}}=240^{\circ}-270^{\circ}$ by DCPAM

Figure 217: QDust at $\mathrm{L}_{\mathrm{s}}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 218: QDust at $\mathrm{L}_{\mathrm{s}}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 219: QDust at $\mathrm{L}_{\mathrm{s}}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 220: T_{s} at 02 LST by DCPAM

Figure 221: T_{s} at 14 LST by DCPAM

Figure 222: T_{s} at 02 LST by MGS

Figure $223: \mathrm{T}_{\mathrm{s}}$ at 14 LST by MGS

Figure 224: T at 18 Pa and at 02 LST by DCPAM

Figure 225: T at 50 Pa and at 02 LST by DCPAM

Figure 226: T at 136 Pa and at 02 LST by DCPAM

41
Figure 227: T at 370 Pa and at 02 LST by DCPAM

Figure 228: T at 18 Pa and at 02 LST by MGS

Figure 229: T at 50 Pa and at 02 LST by MGS

Figure 230: T at 136 Pa and at 02 LST by MGS

Figure 231: T at 370 Pa and at 02 LST by MGS

Figure 232: T at 18 Pa and at 14 LST by DCPAM

Figure 233: T at 50 Pa and at 14 LST by DCPAM

Figure 234: T at 136 Pa and at 14 LST by DCPAM

42

Figure 235: T at 370 Pa and at 14 LST by DCPAM

Figure 236: T at 18 Pa and at 14 LST by MGS

Figure 237: T at 50 Pa and at 14 LST by MGS

Figure 238: T at 136 Pa and at 14 LST by MGS

Figure 239: T at 370 Pa and at 14 LST by MGS

Figure 240: Temp at 02 LST and Figure 243: Temp at 02 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 241: Temp at 02 LST and Figure 244: Temp at 02 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by DCPAM
 $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by MGS

Figure 242: Temp at 02 LST and Figure 245: Temp at 02 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by DCPAM $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by MGS

Figure 246: Temp at 02 LST and Figure 249: Temp at 02 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 247: Temp at 02 LST and Figure 250: Temp at 02 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by DCPAM

$\mathrm{Ls}=120^{\circ}-150^{\circ}$ by MGS

Figure 248: Temp at 02 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 251: Temp at 02 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by MGS

Figure 252: Temp at 02 LST and Figure 255: Temp at 02 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by DCPAM
 $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by MGS

Figure 253: Temp at 02 LST and Figure 256: Temp at 02 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 254: Temp at 02 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by DCPAM $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by MGS

Figure 258: Temp at 02 LST and Figure 261: Temp at 02 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by DCPAM
 $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by MGS

Figure 259: Temp at 02 LST and Figure 262: Temp at 02 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by DCPAM

$\mathrm{Ls}=300^{\circ}-330^{\circ}$ by MGS

Figure 260: Temp at 02 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 263: Temp at 02 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by MGS

Figure 264: Temp at 14 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 265: Temp at 14 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 268: Temp at 14 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by MGS

Figure 267: Temp at 14 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by MGS

Figure 266: Temp at 14 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by DCPAM

Figure 269: Temp at 14 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by MGS

Figure 270: Temp at 14 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 273: Temp at 14 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by MGS

Figure 271: Temp at 14 LST and Figure 274: Temp at 14 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by DCPAM
 $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by MGS

Figure 272: Temp at 14 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 275: Temp at 14 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by MGS

Figure 276: Temp at 14 LST and Figure 279: Temp at 14 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by DCPAM
 $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by MGS

Figure 277: Temp at 14 LST and Figure 280: Temp at 14 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 278: Temp at 14 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by DCPAM

Figure 281: Temp at 14 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by MGS

Figure 282: Temp at 14 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 283: Temp at 14 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 284: Temp at 14 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 286: Temp at 14 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by MGS

Figure 287: Temp at 14 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by MGS

Figure 288: Temp at 03 LST and Figure 291: Temp at 03 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 289: Temp at 03 LST and Figure 292: Temp at 03 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 290: Temp at 03 LST and Figure 293: Temp at 03 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by DCPAM $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by MRO

Figure 294: Temp at 03 LST and Figure 297: Temp at 03 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 295: Temp at 03 LST and Figure 298: Temp at 03 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 296: Temp at 03 LST and Figure 299: Temp at 03 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by DCPAM Ls $=150^{\circ}-180^{\circ}$ by MRO

Figure 300: Temp at 03 LST and Figure 303: Temp at 03 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 301: Temp at 03 LST and Figure 304: Temp at 03 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 302: Temp at 03 LST and Figure 305: Temp at 03 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by DCPAM Ls $=240^{\circ}-270^{\circ}$ by MRO

Figure 306: Temp at 03 LST and Figure 309: Temp at 03 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by DCPAM
 $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by MRO

Figure 307: Temp at 03 LST and Figure 310: Temp at 03 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 308: Temp at 03 LST and Figure 311: Temp at 03 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by DCPAM $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by MRO

Figure 312: Temp at 15 LST and Figure 315: Temp at 15 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 313: Temp at 15 LST and Figure 316: Temp at 15 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 314: Temp at 15 LST and Figure 317: Temp at 15 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by DCPAM $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by MRO

Figure 318: Temp at 15 LST and Figure 321: Temp at 15 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 319: Temp at 15 LST and Figure 322: Temp at 15 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 320: Temp at 15 LST and Figure 323: Temp at 15 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by DCPAM $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by MRO

Figure 324: Temp at 15 LST and Figure 327: Temp at 15 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by DCPAM
 $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by MRO

Figure 325: Temp at 15 LST and Figure 328: Temp at 15 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 326: Temp at 15 LST and Figure 329: Temp at 15 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by DCPAM $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by MRO

Figure 330: Temp at 15 LST and Figure 333: Temp at 15 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by DCPAM
 $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by MRO

Figure 331: Temp at 15 LST and Figure 334: Temp at 15 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by DCPAM

$\mathrm{Ls}=300^{\circ}-330^{\circ}$ by MRO

Figure 332: Temp at 15 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 335: Temp at 15 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by MRO

Figure 336: Water vapor column density by DCPAM (precipitable micron meter)

Figure 337: Column integrated water vapor by DCPAM

Figure 338: Column integrated water vapor by DCPAM

Figure 339: Column integrated water vapor observed by MGS-TES in MY25

Figure 340: Water ice column density by DCPAM (precipitable micron meter)

Figure 341: Optical depth of water ice by DCPAM

Figure 342: Optical depth of water ice by DCPAM

Figure 343: Optical depthof water ice observed by MGS-TES in MY25

Figure 344: $\mathrm{H}_{2} \mathrm{O}$ cloud radius by DCPAM

Figure 345: Prec. water at 02 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 346: Prec. water at 02 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 347: Prec. water at 02 LST and Ls $=60^{\circ}-90^{\circ}$ by DCPAM

Figure 348: Prec. water at 02 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 349: Prec. water at 02 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 350: Prec. water at 02 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 351: Prec. water at 02 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 352: Prec. water at 02 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 353: Prec. water at 02 LST and Ls $=240^{\circ}-270^{\circ}$ by DCPAM

Figure 354: Prec. water at 02 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 355: Prec. water at 02 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 356: Prec. water at 02 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 357: Prec. water at 14 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 358: Prec. water at 14 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 359: Prec. water at 14 LST and Ls $=60^{\circ}-90^{\circ}$ by DCPAM

Figure 360: Prec. water at 14 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 361: Prec. water at 14 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 362: Prec. water at 14 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by DCPAM

Figure 363: Prec. water at 14 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 364: Prec. water at 14 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 365: Prec. water at 14 LST and Ls $=240^{\circ}-270^{\circ}$ by DCPAM

Figure 366: Prec. water at 14 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 367: Prec. water at 14 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 368: Prec. water at 14 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 369: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 370: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 371: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by DCPAM

CONTOUR INTERVAL $=2.000 \mathrm{E}+03$

Figure 372: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by MGS

CONTOUR $\operatorname{INTERVAL}=2.000 E+03$

Figure 373: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by MGS

Figure 374: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by MGS

Figure 375: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 376: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 377: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by DCPAM

CONTOUR INTERVAL $=2.000 \mathrm{E}+0.3$

Figure 378: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by MGS

Figure 379: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by MGS

Figure 380: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by MGS

Figure 381: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 382: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 383: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by DCPAM

CONTOUR INTERVAL $-2.000 \mathrm{E}+0.3$

Figure 384: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and Ls $=180^{\circ}-210^{\circ}$ by MGS

CONTOUR $\operatorname{INTERYAL}=2.000 E+03$

Figure 385: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by MGS

Figure 386: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by MGS

Figure 387: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 388: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 389: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by DCPAM

Figure 390: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by MGS

CONTOUR INTERVAL $=2.000 E+03$

Figure 391: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by MGS

Figure 392: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 02 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by MGS

Figure 393: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by DCPAM

Figure 394: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by DCPAM

Figure 395: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by DCPAM

CONTOUR INTERVAL $-2.000 E+03$

Figure 396: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=0^{\circ}-30^{\circ}$ by MGS

CONTOUR INTERYAL $=2.000 E+03$

Figure 397: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=30^{\circ}-60^{\circ}$ by MGS

Figure 398: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=60^{\circ}-90^{\circ}$ by MGS

Figure 399: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by DCPAM

Figure 400: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by DCPAM

Figure 401: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by DCPAM

CONTOUR INTERVAL $=2.000 E+03$

Figure 402: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=90^{\circ}-120^{\circ}$ by MGS

CONTOUR INTERYAL $=2.000 \mathrm{E}+03$

Figure 403: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=120^{\circ}-150^{\circ}$ by MGS

Figure 404: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=150^{\circ}-180^{\circ}$ by MGS

Figure 405: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by DCPAM

Figure 406: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by DCPAM

Figure 407: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by DCPAM

CONTOUR INTERVAL $=2.000 \mathrm{E}+0.3$

Figure 408: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=180^{\circ}-210^{\circ}$ by MGS

CONTOUR INTERYAL $=2.000 E+03$

Figure 409: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=210^{\circ}-240^{\circ}$ by MGS

Figure 410: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=240^{\circ}-270^{\circ}$ by MGS

Figure 411: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by DCPAM

Figure 412: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by DCPAM

Figure 413: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by DCPAM

CONTOUR INTERVAL $=2.000 \mathrm{E}+0.3$

Figure 414: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=270^{\circ}-300^{\circ}$ by MGS

CONTOUR INTERVAL $=2.000 E+03$

Figure 415: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=300^{\circ}-330^{\circ}$ by MGS

Figure 416: $\mathrm{H}_{2} \mathrm{O}$ ice cloud optical depth at 14 LST and $\mathrm{Ls}=330^{\circ}-360^{\circ}$ by MGS

Figure 417: Snow on the ground by DCPAM

Figure 418: Surface pressure at Viking lander 1 site by DCPAM (black) and observation (diurnal mean, red)

Figure 419: Surface pressure at Viking lander 2 site by DCPAM (black) and observation (diurnal mean, red)

Figure 420: Surface pressure at Mars Pathfinder site by DCPAM (black) and observation (red)

[^0]: ${ }^{1}$ Mars Global Surveyor
 ${ }^{2}$ Thermal Emission Spectrometer
 ${ }^{3}$ Mars Reconnaissance Orbiter
 ${ }^{4}$ Mars Climate Sounder

