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Why Worry About Climate Change in Hawaii ??




Why Worry About Climate Change in Hawaii ??

Help conserve water during
Maui's serious drought

May 6, 2010

Lahaina Mews

Save | [ SHARE of G087

Weeks before the start of summer, lawns are brown, hillsides are
parched and Hawaii is experiencing some of the worst drought
conditions in the country.

Due to the El Mifio phenomenon, rainfall across the state has been
well below normal. After an abnormally dry winter, Maui residents
can expect an arid spring season, the state Commission on Water
Resource Management (CWRM) reported last week.

"Hawaii is suffering from drought, and the current El Nifio has
exacerbated the situation,” said Ken Kawahara, the commission’s
deputy director.

The panel wants Maui residents and businesses to be conscious of
drought conditions, help conserve water and prevent potentially
deadly wildfires.
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Rain does little to ease drought

Farmers hope for relief with the wet season

By Gary T. Kubota

POSTED: 01:30 a.m. H3T, Mov 22, 2010 &5 Liks B3 50759 likes. Sign Up to see what your friends
LAST UPDATED: 12:32 p.m. HST, Nov 22, 2010 like.,

The statewide drought appears to be easing as coolerLa
Mina conditions bring more rain to Hawaii, according to
the Mational Weather Service.

But farmers and ranchers said a protracted amount of rain
is needed before they can recover from several years of
extremely dry conditions.

Some areas, such as southwestern Kauai and leeward
sections of the Big Island and Maui, did not receive
significant rainfall in October, continuing extreme drought
conditions, National Weather Service officials said Friday.

Late Thursday, thunderstorms along with lightning passed
by Hawaii, and most of the anticipated heawy rainfall
missedthe islands.

The weather service reported 0.15 inches of rain Thursday
at Honolulu Airport and 0.6 inches at Lihue Airpart but
nane for airports in Hilo and Kahului.

In October, while many places reported less than normal
rainfall, some areas exceeded their normal monthly
average, including Haiku on Maui with 5.71 inches - 12
percent abave normal — and Honaunau on the Big Island
~ with 5.54 inches of rain, 7 percent above normal.

\ Arain forest gauge on Cxahu recorded 19.6 inches, or 15
percent more than normal, the weather service said.

COURTESY FHOTO
Cattle rancher William Senchez Sr. has had to cut his herd in
half because of the drought on Kauai.

Kauai rancher William Sanchez Sr. said he has had to cut
his herd in half and is down to 1,000 head, and he has
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Media coverage of controversy about water rights on Maui in March 2016
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Waianae wildfire flare up, residents evacuate

EiRecommend B3 Sign Up to see what your friends recommend.

Posted: Jun 07, 2012 5:26 PMHST
Updated: Jun 07, 2012 6:01 PMHST

WAIANAE (HawaiiNewsMNow) - Firefighters were once again called to battle a
persistent wildfire in Waianae Thursday afternoon.

The latest is a flare-up of a fire that first started last night in the Waianae
mountain range off Piliuka place.

Reportedly at least half a dozen residents have voluntarily evacuated. The
American Red Cross says it is opening a shelter at Waianae District Park for
residents who are evacuating from their homes.

This fire is unrelated to Monday's fire began near Navy property in Lualualei

Vallev then erawled nver tn Waianae Vallev and enread intn the Waianae Kai



March 26, 2015
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% Honolulu Fire Department helicopter makes a water drop on a fire above the University of Hawaii-Manoa Friday
ifternoon.



Hawaii Plants and Birds

Hawaii is world’s “hot spot” of biodiversity
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Hawaii Plants and Birds

Hawaii is world’s “hot spot” of biodiversity
Hawaii is world’s “hot spot” for extinction
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Hawaii is world’s “hot spot” of biodiversity
Hawaii is world’s “hot spot” for extinction




Hawaii Plants and Birds

More than 90% of native Hawaiian
plants and animals are endemic, meaning
they exist nowhere else on earth.




75% of the United States’ already extinct
plants and birds once lived only in Hawaii
even though its islands represent just
0.2% of the nation’s total land area.

U.S. government lists 526 plant species
and 88 bird species as threatened - more
than a 1/3 third are found in Hawaii.
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The Extinction of Hawaiian Birds

By DAVID . FLASPOHLER




Bennng et al. PNAS 2002

 The Hawaiian honeycreepers (Drepanidae)
e 29 species — many are already extinct




Bennng et al. PNAS 2002

* “Anthropogenic climate change is likely to
combine with past land-use changes and biological
invasions to drive several of the remaining species
to extinction”







“Recent population declines in the
silversword are associated with
decreasing precipitation and
increasing temperature”.
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T ra d e_Wi n d I n Ve rS i O n Trade Wind Inversion Seen in Profiles of Air

Temperature and Relative Humidity
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* Frequency ~80%
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Trade Wind Inversion
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Typical Pattern of
Orographic Rainfall
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DRY WET

Typical Pattern of
Orographic Rainfall
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Typical Pattern of
Orographic Rainfall
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Mean Annual Rainfall

State of Hawai‘i
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Mean Annual Rainfall

State of Hawai‘i

2011 Rainfall Atlas of Hawai'i
Department of Geography, University of Hawai'l at Manoa
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Mean Annual Rainfall

State of Hawai‘i

2011 Rainfall Atlas of Hawai'i
Department of Geography, University of Hawai'l at Manoa
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Mean Annual Rainfall

State of Hawai‘i
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a) 1800 UTC 23 February 1997,
b) 1200 UTC 24 February 1997,
€] 1208 UTC 25 February 1997,
d) 1200 UTC 26 February 1997,
al 1200 UTC 27 February 1997,

Sometimes, particularly in
winter, the usual trade wind
pattern breaks down and
more active weather can
lead to convective rain

This is how most of the rain
in the “rain shadow” regions
occurs.



March 2012
Oahu




The interaction of the atmospheric
flow with the very tall and very steep
topography in leads to fine structure
in the microclimates



OBSERVED CLIMATOLOGICAL
RAINFALL RATE




This leads to a big challenge for even the
finest resolution global models for climate
projections




Hyvdrological Research Letters 3, 49-53 (2009)

Published online in J-STAGE (www.jstage.jst.go.jp/browse,/HRL). DOI: 10.3178/HRL.3.49

Projection of changes in future weather extremes
using super-high-resolution global and regional atmospheric models
in the KAKUSHIN Program: Results of preliminary experiments

Akio Kitoh, Tomoaki Ose, Kazuo Kurihara, Shoji Kusunoki, Masato Sugi
and KAKUSHIN Team-3 Modeling Group
Meteorological Research Institute, Tsukuba, Japan

Abstract:

Changes in future weather extremes are projected
using a global atmospheric general circulation model
and a non-hydrostatic regional climate model under the
global warming environment in the near future (2030s)
and at the end of the 21st century. The global 20-km
mesh model can simulate tropical cyclones more realis-
tically in their strength, structure and geographical dis-
tribution together with associated heavy rainfall and
strong surface winds as compared with lower resolution
models. According to the SRES AlB scenario, it is pro-
jected that at the end of the 21st century there will be
a 40%-60% increase in precipitation and a 15%~20%

climate change studies (Mizuta et al. 2006) based on the
Japan Meteorological Agency (JMA) numerical weather
forecast model. The grid size of this model is several
times higher than that previously used in climate model
simulations. In the previous experiment, we performed
the present-day simulation using the observed sea
surface temperature (SST) and the global warming
simulation by adding the SST anomalies obtained by
the Meteorological Research Institute AOGCM (MRI-
CGCM). Utilizing the results of this experiment,
Kusunoki et al. (2006) investigated the Baiu rain band
changes over East Asia at the end of the 21st century,
while Kitoh et al. (2008) showed future climate projec-
tions over the Middle East. Moreover, Kamiguchi et al.
(2006) discussed changes in extremes in precipitation

~20 year long integrations
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* Adapted from WRF — community Weather Research & Forecast model

The Hawaii Regional Climate Model (HRCM)

31 vertical levels (14 levels below 700 hPa)

New data sets for: land cover/use (NLCD), surface albedo (MODIS), vegetation

types/fraction and soil types (STATSGO?2)

MERRA (Modern-Era Retrospective Analysis for Research and Applications)

reanalysis from NASA (6-hourly data @ 0.5°x0.67°)
NOAA SSTs (daily data @ 0.25°x0.25°)
1-way nesting with up to 3 domains (D1, D2, D3)

D1 —15 km
(260x320)

§
D2 | =,

D2 —3 km
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D3

(276x136)]

D3 -1 km
(154x112)




Green vegetation fraction in July

(a) old GVF (b) new GVF
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Surface albedo inuly
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Specification of the boundary conditions

geopotential

horizontal wind

humidit
temperature y

MERRA
reanalysis data,
NOAA SSTs

Present-day
run

1990-2009
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AVG=3.30 (b) HRCM AVG=12.81, SC=0.94
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- Observations

- model
Daily mean Daily mean Daily mean Daily mean  Daily mean
surface air maximum air minimum air surface surface wind
temperature temperature temperature humidity speed
30
25 1 0.68 -0.31 1.84 -1.81 0.40
20 1

Hilo

15 1
10 1
5.
0

=T

12162024 2832 121620242832 121620242832 6 8101214161820 0 3 6 9121518
TMEAN (°C) TMAX (°C) TMIN (°C) Q2 (g/kg) WINDMEAN (m/s)

Domain 2
results Ax ~ 3 km

Big Island




Seasonal Cycle in 20-year Mean Data

At Individual Stations
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Time Series (6-Month Running Means)

At Individual Stations
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(d) OBS AVG: 5.23
20 Year November-April " & Winter

Area mean model bias is
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(a) OBS AVG: 4.46

BIAS IN MODEL SIMULATION
(¢) HRCM - OBS
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NARCCAP

20 year summer precipitation
bias express as % of observed
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12-hourly operational
soundings are taken at
2 stations — Lihue & Hilo
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Diurnal Rainfall Variation

Time of Peak Climatological Rainfall Amounts

(a) OBS (b) HRCM
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Diurnal Rainfall Variation

Time of Peak Climatological Rainfall Amounts

(a) OBS (b) HRCM
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(a) 90th Percentile - OBS (d) 99th Percentile - OBS
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Global Warming Projection for
Late 215t Century




Specification of the boundary conditions

Pseudo-Global-Warming Method (Kimura and Kitoh 2007; Sato et al. 2007)
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Global warming
increment
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Specification of the boundary conditions

Pseudo-Global-Warming Method (Kimura and Kitoh 2007; Sato et al. 2007)

CMIP3 models

BCCr-BCM2.0
CGM3
CNRM-CM3
CSIRO-MK3.0
CSIRO-Mk3.5 Multi-model mean

GFDL-CM2.0 —> 20C3M —

GFDL-CM2.1 average 1990-1999
GISS-EH

GISS-ER
FGOALS-g1.0
INGV-SXG .
INM-CM3.0 Multi-model mean
IPSL-CM4 —> SRESA1B ||

MIROCS3.2(hires) average 2090-2099
ECHAMS5/MPI-OM

MRI-CGCM2.3.2
CCSM3
PCM
UKMO-HadCM3
UKMO-HadGEM1




Global warming increment: SST

Future scenario (SRES A1B, 2090-2099) — present-day (20C3M, 1990-1999)

Multi-model mean (16 CMIP3 models)
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“215t century change” = (2081-2100) — (1990-2009)
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215t Century Change

surface air temperature
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SIMULATED SURFACE AIR WARMING
OVER THE BIG ISLAND
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Clim Dyn
DO 10.1007/s00382-014-24419

The strength of the tropical inversion and its response to climate

change in 18 CMIPS models

Xin Qu - Alex Hall - Stephen A. Klein -
Peter M. Caldwell

Rate of increase in warming
with height is even larger
than expected based on
changes in moist adiabat
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Clim Dyn

DOT 10.1007/s00382-014-2441-9

The strength of the tropical inversion and its response to climate
change in 18 CMIPS models

Xin Qu - Alex Hall - Stephen A. Klein -

Peter M. Caldwell

Rate of increase in warming

with height is even larger
than expected based on
changes in moist adiabat
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Tropical troposphere is stabilized on average
by the global warming effects

Rate of increase in warming
with height is even larger
than expected based on
changes in moist adiabat




Tropical troposphere is stabilized on average
by the global warming effects

Rate of increase in warming Perha pS less convective

with height is even larger rainfall?
than expected based on
changes in moist adiabat
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Surface Wind Speed

(¢) Summer - present-day
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(a) Year - present-day (¢) Year - future change (%)
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(a) Year - present-day (¢) Year - future change (%)
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(a) Year - present-day (¢) Year - future change (%)
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(a) present-day
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humidity horizontal wind
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Trade wind inversion frequency (fraction)
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Cloud base height

Cloud top height

Cloud base and cloud top height (km)

Present-day Future scenario
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Snow capped Mauna Kea
& Mauna Loa

2014-04-02710:31:41-1000 2 3
This image was taken at Wednesday, April 2, 2014, 10:31:41 am HST.
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Snow capped Mauna Kea
& Mauna Loa

2014 1:41-1000 e -
[ This image was taken at Wednesday, April 2, 2014, 10:31:41 am HST.
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end of 215t century
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Observed and Modeled
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2N 1, €&
21°30'N - L \% 30 |
21°N - 2 o 04 AW /
20°30'N - 8 1 Y1 *‘V [ fﬁ*{ﬁ?&i&%
ZOON m 4 : T I | | | II 1 | 1
19°30'N - 1991 1995 1999 2003 2007
19°N q_ | . RAINFALL (mm/day)

K/(20 years)

) 1 1

2.50
2.25
2.00
175 _
X
1.50 =
1.25 8
1.00
0.75

0 50 120E 150E 180 150W 120W 90W

0.25




(b) 90th Pereentile - present-day (e) 99th Percentile - present-day
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o Results from the inner 2
domain (D3) with 1 km spacing
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Observations AX =3 km

(a) Observations (c) Hawaii Regional Climate Model-3km
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20 year (1990-2009) mean rainfall observed and in the 3km
resolution nested grid in the Hawaii Regional Climate Model
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Unfortunately adequate simulation for Maui (and probably for Oahu and Kauai)
requires quite fine horizontal resolution
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Observations AX =1 km AX = 3 km

(a) Observations (b) Hawaii Regional Climate Model-1km (c) Hawaii Regional Climate Model-3km
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Unfortunately adequate simulation for Maui (and probably for
Oahu and Kauai) requires quite fine horizontal resolution
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Conclusions

present day simulation

» HRCM forced with observed boundary fields

can simulate t
well as diurna
variations of t
Islands.

ne basic features of the mean as
- seasonal and interannual

ne precipitation in the Hawaiian

* Unfortunately really adequate simulation for
Maui (and probably for Oahu and Kauai)

requires quite

fine horizontal resolution



Conclusions
climate change projection

 The surface and surface air temperatures are
projected to have around 2-3.5°C degree increase
over the 215t century in the SRESA1B scenario.
The surface warming is intensified with height.

* Projected rainfall changes are significant (up to
~30%) and generally exhibit a wet-get-wetter,
dry-gets-dryer pattern.

* The biggest practical effects may be increased
drying (more evapotranspiration, less rainfall) in
the already dry parts of each major island
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