Climate Change:
some basic physical
concepts and simple

models

David Andrews



Some of you have used my

textbook ‘An Introduction to |

Atmospheric Physics

Atmospheric Physics’ (IAP) =y owid . i

| am now preparing a 2"9 edition.

The main difference will be a new chapter on
Climate Physics.

This lecture will cover some of the new material.



Outline

e The physics of climate change is a
very complex subject!

e However, many of the most
Important ideas can be described
using very simple models. (‘Toy
models’.)

e An example is the Energy Balance
Model (EBM).



| shall focus on:

e Response of EBM to radiative forcing
— Several examples
— CO, stabilisation

— Clarification of Andrews and Allen figure from
previous lecture

e |Introduction to climate feedbacks
[If there is time]



Energy Balance Model

e Simplest case: the ‘climate system’
Includes the atmosphere, land
surface and ‘mixed layer’ (= top
100m of ocean), but not deep ocean:

«— | Global-mean

temperature T
Atmosphere

Land Mixed layer



Radiative power input and output
(per unit area)

Solar input F* Earth’s output F'

Climate system

e Solar input F* : ‘short-wave’ radiation (visible,
ultra-violet), wavelength < 4 um

e Earth’s output F' : ‘long-wave’ radiation (infra-

red), also called ‘thermal’ radiation, wavelength
= 4 um.




In equilibrium:

Solar input = Earth’s output

Out of equilibrium:

Solar input # Earth’s
output

>

Climate change



Equilibrium climate: simple

models
R
F
aun ; Earth ]
a
B ¥

~ 1370 W m-2 short-

wave radiation from

Sun, of which — 30%
Is reflected

[See IAP, 1.3.1]



e Earth intercepts solar beam over its cross-
sectional area, na ?

e S0 Incident power = 1370 X 0.7 X
na ¢ Watts (short wave).

e But it emits (long-wave) power from all its
surface, 4na °.

e Assume Earth acts like a black body at
(absolute) temperature T, so that it emits
power T4 per unit area, where

c=5.67x108%8W m=2K+4
IS the Stefan-Boltzmann constant.



So in equilibrium,
Incoming power = outgoing power:
1370 x 0.7 X ma? = 4mwa? x oT%.

Cancel wa? and rearrange:

T = (1372§0-7)1/4 ~ 255 K.

[Note for later use: F! = oT% ~ 240W m—2.]
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e This temperature (255 K) i1s much
lower than typical observed global-
mean T — 290 K

e S0 this model misses some
Important physics, especially the
effects of greenhouse gases.
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Greenhouse gases

Are gases that absorb and emit infra-red
radiation but allow solar radiation to pass through
without significant absorption. They affect F' but

not F'.

Examples: Water vapour (H,O) and carbon
dioxide (CO,) are the two most important in
determining the current climate.

Increasing CO, Is a major contributor to climate
change.

Effect of H,O in climate change is more complex.
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e Very simple model of effect of
greenhouse gases in producing
current climate: see IAP, 1.3.2.

e In this lecture | shall mostly focus on
climate change.
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Consider unit area of climate
system

Let heat capacity per unit area = C (mostly
in mixed layer). Then

Cd—TzFl—FT.
dt

Assume net heat flux into system
rl— Pl =Q(T,U)

where T = global-mean temperature and
U = concentration of some greenhouse gas.
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Steady-state (equilibrium)
climate

In a |steady-state|climate at constant

temperature T'="1Tp and concentration
U = Up, we have CdT'/dt =0

=  Q(Tp,Up) =0

l.e. net heat flux into system is zero.
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Perturbed climate

Perturb steady state, so
T =T+ T'(¢), U=Uy+ U'(%),

where T' and U’ are small, =

Q(To+T', Ug+U")

Taylor expansion oQ T/ - 0Q) o
OT oU




Radiative forcing

Define|radiative forcing by

Q.
ou

F =

Example: U’ might be an increase
In CO, concentration
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Climate feedback

Define by A= gg

Examples:

e ‘Black body feedback’: warmer Earth
emits more long-wave radiation,

A = 0, negative feedback

e\Water-vapour feedback: warmer
atmosphere contains more water vapour,
traps more long-wave radiation,

A < 0O, positive feedback.
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Heat
capacity

Equation for EBM

So we get

Radiative forcing

J Feedback

Rate of change of heat
content of climate system
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Solution of EBM for some
specified time-dependent
radiative forcings F(t)

CL 4 \T' = F(t) (%)

F(t) could represent, say, radiative
forcing due to an increase of
greenhouse gases such as CO..
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General solution

Define [feedback response time

T=C/\.

To solve equation (x), divide by C and multiply
by the integrating factor exp(t/7) to get

i (T/et/T) — F (%) ot/

dt C
Assume T/ = 0 at an initial time ¢t = 0, and
integrate (%) to obtain formal solution

—t/T  t
/ __ € w/T
T'(t) = . /OF(u)e du .
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Some examples of F(t)

(a) Step-function forcing

F(t)=0 for t<0, =F; for t>0,

where F7 is a constant. Then temperature
response is given by

T'(t) = S(l —e_t/T) for t>0,

where

F
g—21
A

IS called the|equilibrium climate sensitivity
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Equilibrium climate
sensitivity

The equilibrium climate sensitivity S is the
solution to EBM equation (x) when
CdT’/dt is negligible,

l.e. long-term steady-state solution:

T/: :ﬂ
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Solution to EBM equation (*)

| F(o) | _ )
for step function forcing
Step function forcing
1.2 )
&ﬁ 1.0 | T’ approaches
[, 0.8 Sast—> w
E 0.6
Temperature
2 0.4 response / S
~ 0.2
0.0 _ _ _ _ _ _ }
O 1 2 3 4 5 6 7 8
Read t/it

as I'| Time / feedback response time —

24



(b) Ramp forcing V
> ¢

Radiative forcing|increases linearly with time]

F(t)=0 for t<0, =~t for t>0,

where ~ is constant. Good representation of
the radiative forcing due to increasing CO».

Solution is

/ _ 7 E_ —t/T
T(t)_)\( 1+e ) for t>0.

T

(Exercise for student!)
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TA/yt and F /vyt

0" _
8
6
-+ Temperature
response linear

2 at large t
0 . i}

0 5 6 7 8

/T

Temperature response
initially quadratic
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(c) Pulse forcing

F(t)

O for t<0 and t>tg,
Fp for O0<t<tg.

Example: massive volcanic eruption (Fy < 0).

Pulse forcing
1.2 | |

1.0
0.8
0.6
0.4

0.2
0.0

T/S and F/F,

t/T 27



(d) Sinusoidal forcing

F(t) = F» cos(wt)

for all t, where F5 is constant; seek a purely
oscillatory response.

Example: forcing by the 11-year solar cycle.

(This is similar to an AC electric circuit
calculation.)
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(e) Ramp followed by steady forcing
Relevant to “CO» stabilisation” scenario?

CO2 stabilisation Equilibrium
time temperature

——

F(t) initially grows
linearly and then
levels off

——
T

Linear phase

TA/yt and F

el O R )

0O 2 4 6 8 10 12 14

t1 7T 29



What can this model tell us about how the
climate might respond to CO, stabilisation?

e Can we forecast the equilibrium
temperature, given information at
some earlier time?

[—
-

TA/yt and F/vyt
S N B2 O 0

0

T

2 4 6 8 10 12 14
t/ T

— e.g. predict this

temperature...

... given this?

(This temperature is called
the transient climate
response, TCR.)

oU




e This Is easy If
—we have a perfect model
—we know all the parameters.

e But It Is difficult to do In practice!

e Even If we believe our EBM
represents the physics quite well
(???), we still have to know the
values of parameters C and A.
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A possible approach

e Forecast (say) 100 years ahead with
very complex general circulation
model.

e Fit results for global-mean
temperature to EBM over this 100
years.

e Then use EBM for forecast beyond
100 years.
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e But there will be uncertainties In the
fitted values of C and A.

(Note: the value of the heat capacity C can’t
be determined “from first principles”,
because of likely importance of the deep
ocean.)

e This may make it difficult to get an
accurate value for equilibrium
temperature.
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Example

Take ramp time = 70 years.

Fix A = 1.2 Wm=—= K1

Vary t = C/ A: 10 years,
40 years, 70 years.

Forcing

/K and F/W m™

T/K and F/W m™

Temperature
response

S—
<3
=

=

<
M
S
B~

T=10 years

60 80 100 120 140
t/ years

Equilibrium

T =40 years

60 80 100 120 140
t/ years

/ T =70 years

0 20 40

60 80 100 120 140
t/ years 34



T = 10 years: 70-year T’ is
88% of equilibrium value

T = 40 years: 70-year T’ is
549% of equilibrium value

T = 70 years: 70-year T’ is
38% of equilibrium value

T/K and\F/W m?

/W m?

T/K and

/Wm

T/K and

0 20 40 60

T =10 years

80 100 120 140

t/ years

0 20 40 60

T =40 years

80 100 120 140

t/ years

T =70 years

0 20 40 60
t/ years

80 100 120 140
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e SO0 given the temperature at 70
years, the equilibrium value depends
strongly on the (poorly-known) value
of C.

e But actually, the value of the
feedback parameter A IS even more
poorly known!
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Use of EBM to provide
diagnostics for IPCC climate
forecasting models

(Andrews & Allen, Atmos. Sci. Lett. 9,
7-12, 2008)

Each GCM run (numbered dot)
gives an estimate of
parameters such as:

TCR,

ECS =S,

Heat capacity = C,
Feedback response time =71
These are not all independent
of each other.
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Contours: likelihood calculated for an
observationally-constrained ensemble
of 28,800 simple climate models

Projection of likelihood onto axis |

Clearest interpretation of GCM
results is in terms of
feedback response time and
transient climate response.

The GCMs systematically
underestimate the TCR
compared with observations
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Climate Feedbacks

Earlier I said: assume net heat flux into system

rl— Fl =Q(T,0)

where T' = global-mean temperature and
U = concentration of some greenhouse gas

and|climate feedback parameter

0Q

A= -2
oT
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Simplest case: black body feedback

Assume ‘climate system’ behaves like a black
body: FT = ¢T% where o is the Stefan-Boltzmann
constant.

This would be true, with T' = 255 K, if there
were no greenhouses gases.

Assume Fl ~ 240 W m~2, independent of T.

SO \gp = —g—% = %—};T = 4073 ~3.8Wm 2K 1

This is > 0: warmer planet radiates more,
giving negative feedback.



Water vapour feedback

Take Q = Q(T, V(T)), where V(T) is satura-
tion mixing ratio at the mean surface pressure.

T he corresponding feedback parameter is

- o0Q dV
M avdT
By Clausius-Clapeyron equation,
dV VL
= >0

dT ~ RyT?2
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But 8Q/0V > 0, since F! decreases as
water vapour amount increases, = Awv < O.

Calculations show that Aigta) = Agg + Awv > 0O,
for current Earth, so overall still get negative
feedback = stable climate.

However, if conditions gave a large enough

—Awv, We could get Aiotg) < O, = positive feed-
back: the runaway greenhouse effect.

Did this happen on Venus? Could it happen on
Earth??? (Probably only if temperature gets
much hotter.)
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The End

43
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