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Fundamental dynamics of two-dimensional atmospheric general circulations sym-
metric about the rotation axis of planets is investigated to obtain a wide perspec-
tive from the Held and Hou model of the Hadley circulation to the Venus-like
super-rotation driven by the Gierasch mechanism. A parameter sweep experiment
is performed to explore steady solutions of the axisymmetric primitive equations of
the Boussinesq fluid on a rotating sphere. Sweep parameters are the external ther-
mal Rossby number (RT ), the horizontal Ekman number (EH), and the vertical
Ekman number (EV ). Two indices are introduced to make a dynamical analysis of
the numerically obtained circulations: a measure of the intensity of super-rotation
(S) and a measure of rigid rotation (Rg). The characteristics of steady solutions
change largely in a certain range of EH for given RT and EV . Approximate posi-
tions of this transition can be estimated theoretically as EH ∼ EV S(RT ), where
S ∼ RT for RT ≤ 1 and S ∼

√
RT for RT > 1.

1. INTRODUCTION

The Hadley circulation is an important part of the general circulation of the atmosphere. Schneider
(1977)1) and Held and Hou (19802), HH80 hereafter) studied the Hadley circulation by using an
idealized two-dimensional numerical model symmetric with respect to the rotation axis of the Earth
with no horizontal eddy diffusion. HH80 explained the basic dynamics of the Hadley circulation
with a few physical principles: (i) the polewards moving air conserves its axial angular momentum,
whereas the zonal flow associated with the near-surface, equatorwards moving flow is frictionally
retarded and is weak; (ii) the circulation is in thermal wind balance (Vallis, 20063)). This is known
as the Held and Hou (HH hereafter) model. After this theory, a lot of studies applying the HH
model were carried out; see Lindzen (1990)4), James (1994)5), Satoh (1994)6), Williams (2003)7)

and their references.
Super-rotation, a state of an atmosphere rotating much faster than the planet, is one of the

prominent phenomena observed in the Venus and the Titan, which is the largest moon of the
Saturn. Gierasch (1975)8) studied the mechanism of the super-rotation assuming an axial symmetric
circulation and an infinitely large horizontal eddy diffusion. The Gierasch mechanism was studied
by Matsuda (19809), 198210), M80/82 hereafter) using a model of Boussinesq fluid with a finitely
large horizontal eddy diffusion.

Actually, both HH80 and M80/82 used the same system: the primitive equations of Boussinesq
fluid with a Newtonian heating/cooling to force the flow field, assuming a steady state, and axial
and equatorial symmetries. The main differences between them are the values of the horizontal
eddy diffusion coefficient (νH) and the angular velocity of the planet (Ω). In other words, this
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system has the Hadley solution of HH type when Ω is large (like the Earth) and νH = 0; on the
other hand, when Ω is small (like the Venus) and νH is very large, the system has the super-rotation
solution of Gierasch-Matsuda (GM hereafter) type: an atmosphere rotating much faster than the
planet in nearly rigid rotation.

In the present study, we explore steady solutions from the HH type circulation to the GM type
circulation by a parameter sweep experiment. Transition between two types of circulation and its
parameter dependence are investigated by introducing a measure of the intensity of super-rotation
and that of rigid rotation.

2. DESCRIPTIONS OF THE SYSTEM

Governing equations

The governing equations used in this study are the primitive equations of Boussinesq fluid with a
Newtonian heating/cooling, under the assumptions of a steady state (∂/∂t = 0, where t is time),
axial symmetry (∂/∂λ = 0, where λ is longitude), and equatorial symmetry. The equations in
spherical geometry are given by,
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Here u, v, w are the zonal, meridional, and vertical components of the velocity, Θ is the potential
temperature, and Φ ≡ p/ρ, where p is the pressure and ρ is the density. Independent variables φ
and z are the latitude and height, respectively. The constants a and Ω are the radius and angular
velocity of the planet, g is the gravitational acceleration, τ is the time constant for Newtonian
heating/cooling, νH and νV are the horizontal and vertical diffusion coefficients, κV is the vertical
thermal diffusion coefficient, and α is the thermal expansion coefficient.

The quantity Θe in the Newtonian heating/cooling term in equation (3) is a potential temper-
ature in radiative equilibrium which is given by the form

Θe

Θ0

= 1 − 2

3
∆HP2(sin φ) + ∆V

(
z

H
− 1

2

)
, (6)

where Θ0 is the global mean of Θe, ∆H and ∆V are the fractional change of potential temperature
in radiative equilibrium from equator to pole and from the top to the bottom, respectively, and
P2 is the second Legendre polynomial P2(x) = (3x2 − 1)/2. We assume the thermal expansion
coefficient as α = 1/Θ0.

Horizontal diffusion terms, DH(u) and DH(v), are defined in the form to conserve angler mo-
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mentum (Becker, 200111)), as follows:
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A zero stress condition is imposed at the top boundary, at z = H, and the stress at the ground
is taken to be proportional to the surface wind. Zero vertical heat flux is imposed at both top and
bottom boundaries, so boundary conditions are

w =
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=
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∂z
=

∂Θ

∂z
= 0 at z = H, (9)

w =
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= 0, νV
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= Cu, νV

∂v

∂z
= Cv at z = 0, (10)

where C is a drag coefficient.

Non-dimensionalization

To clarify the dependence of obtained solutions on the external parameters, we derive non-dimensional
form of the governing equations. First, we write variables as,

u = Uu∗, v = V v∗, w = Ww∗, Θ = Θ0Θ
∗, and z = Hz∗, (11)

where U, V,W, Θ0, and H are the scaling values, and the asterisk denotes non-dimensional variables.
From the hydrostatic equation (4), Φ can be scaled as

Φ = gHΦ∗, (12)

and from the meridional derivative of (4), ∂Φ/∂φ can be scaled as

∂Φ

∂φ
= β∆HgH

∂Φ∗

∂φ
, (13)

where β ≡ (∂Θ/∂φ)/(∂Θe/∂φ) is the ratio between meridional gradient of potential temperature
and that in the radiative equilibrium state. Substituting (11), (12), and (13) to the governing
equations (1)-(5), the non-dimensional equations are obtained as follows (asterisks are omitted),
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Here the non-dimensional numbers are
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external thermal Rossby number: RT ≡ gH∆H

a2Ω2
,

horizontal and vertical Ekman numbers: EH ≡ νH

a2Ω
and EV ≡ νV

H2Ω
,

vertical Prandtl number: PrV ≡ νV

κV

,

Rossby numbers scaled with meridional and vertical velocity: Rv ≡ V

aΩ
and Rw ≡ W

HΩ
,

the ratio of zonal velocity to meridional velocity: γ ≡ U

V
,

and the ratio of the time constant for Newtonian heating/cooling to the period of the rotation:
ε ≡ τΩ.

From (18), we can show Rv ∼ Rw immediately. From the boundary condition (10), we obtain
another non-dimensional number ζ ≡ νV /(Cδz), where δz is the height of the lowest layer.

These non-dimensional parameters consist of two groups depending on whether the value is
determined externally in each experiment, or not. External parameters are RT , EH , EV , P rV , ε, ζ,
∆H , and ∆V , while internal parameters are Rv, β, and γ. If we fix the non-dimensional external
parameters, the solution of the governing equations is expected to be similar.

3. A PARAMETER SWEEP EXPERIMENT

A parameter sweep experiment is designed to investigate steady solutions of the system, from
the HH type Hadley circulation to the GM type super-rotation. Because RT , EH , and EV are key
parameters of HH80 and M80/82, these are chosen for sweep parameters. Constructing a parameter
space (RT , EH , EV ) as Fig.1, we can draw the planes which correspond to the parameter ranges of
HH80 and M80/82. Our main interest is the transition of the steady solutions between two well
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Fig. 1: Positions of Held and Hou (1980, mesh plane), Matsuda (1980, 1982, light gray plane),
and our numerical experiment (dotted plane) in a parameter space (RT , EH , EV ). The dark areas
denote the regions where the solution fails to achieve a steady state because of a symmetric insta-
bility. Alphabet letters indicate the positions of the cases where zonal wind fields and meridional
streamfunctions are shown in Fig.2 and Fig.3.
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known situations. Note that the Grashof number (Gr) which M80/82 used for a sweep parameter
is related to RT and EV by Gr = RT /E2

V . Furthermore, the plane of M80/82 drawn in Fig.1
corresponds to only a part of the investigated range in M80/82.

We construct a numerical model of the time-dependent version of the governing equations (1)-
(10), using a spectral transform method for meridional direction, a central difference method for
vertical direction, and the 4th order Runge-Kutta method for the time-integrations. The truncation
order of Legendre polynomial is 85 (64 grid points from equator to pole for the Gaussian latitudes)
and the number of layers in vertical is 32. The initial condition is a state at rest with a constant
potential temperature Θ0, and the time-integrations are done with a time step of 1 hour until a
steady state is achieved.

To sweep RT , EH , and EV with other non-dimensional external parameters fixed, we change the
values of Ω, τ , νH , νV , κV , and C while the other parameters are fixed as follows: a = 6.4× 106 m,
H = 8×103 m, δz = 250 m, g = 9.8 m/s2, Θ0 = 250 K, ∆H = 1/3 , and ∆V = 1/8. Sweeping ranges
are 1.2× 10−2 ≤ RT ≤ 1.2× 103, 3.3× 10−10 ≤ EH ≤ 1.3× 100, and 2.1× 10−4 ≤ EV ≤ 2.1× 10−2

as shown in Fig.1. The other non-dimensional external parameters are fixed as PrV = 1, ε = 126,
and ζ = 0.8.

4. NUMERICAL RESULTS

We execute 342 runs to obtain steady solutions numerically in the parameter range described
above. However, the calculations indicated by the dark areas in Fig.1 fail to achieve a steady state.
Spatial distribution of the potential vorticity indicates that symmetric instability occurs when the
numerical solution does not converge to a steady state. In this study, however, we focus on the
steady solutions, not on time-dependent ones.

Figures 2 and 3 show zonal wind fields and meridional streamfunctions, respectively, of steady
solutions for the cases indicated by alphabet letters in Fig.1. The parameter values for the case o
are similar to those given in HH80, and the obtained steady solution is also similar: the Hadley
circulation with weak indirect Ferrel cell. The panels p and q (EH = 3.3× 10−5, 3.3× 10−1), which
are for the cases of much larger EH than o (EH = 3.3 × 10−10), show that the zonal wind field
changes to a rigid rotation state, and the Hadley circulation weakens and expands to pole. Similar
transition can be seen for the cases of EV = 2.1× 10−3 (h, i, and j). The cases j and q correspond
to the solution of thermal wind balance of the Earth type in M80/82. When RT is increased at
large EH of 3.3 × 10−1, the pattern of rigid rotation does not change very much, but the relative
rotation speed of the atmosphere to the planet increases. When RT = 1.2 × 103 (the case n), the
zonal wind speed at the top boundary is about ten times faster than the rotation speed of the
planet aΩ (about 4.7 m/s). This is a typical super-rotation state, and corresponds to the solution
of thermal wind balance of the Venus type in M80/82. For a large value of EV = 2.1 × 10−2, the
zonal wind speed is reduced for all parameter values of RT and EH because of the strong vertical
diffusion as shown in the panels a-g.

5. DYNAMICAL ANALYSIS OF THE TRANSITION

For the dynamical analysis of the transition from the HH type Hadley circulation to the GM type
super-rotation, we consider this transition as two parts by introducing two indices: the increase of
the intensity of super-rotation and the transition of the zonal wind field to a rigid rotation state.
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Fig. 2: Numerically obtained zonal wind fields for some combinations of external parameters
RT , EH , and EV . Values of the sweep parameters are shown in the top and left of each panels.
Alphabet letters on this figure correspond to those on Fig.1. Contour intervals are 5 m/s. Shade
areas indicate the regions of negative values.
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Intensity of super-rotation

We introduce a measure of the intensity of super-rotation, S, which is defined as a latitudinally
averaged zonal wind at the top boundary, from equator to pole, divided by the planetary rotation
speed; namely S ≡ U/(aΩ). In this study, we call a state with S ≥ 1 a super-rotation state. The
dependence of S on RT , EH , and EV are shown in Fig.4. The value of S becomes larger than
unity when both EH and RT are large: RT ≥ 4 for EH = 3.3 × 10−1 and EV = 2.1 × 10−3, and
RT ≥ 60 for EH = 3.3 × 10−1 and EV = 2.1 × 10−2. However, when the horizontal diffusion EH is
not so large (EH = 3.3 × 10−3), S is less than unity, even if RT becomes large as RT = 1.2 × 103.
This diagram shows a very large horizontal diffusion is necessary for super-rotation, and a smaller
vertical diffusion is preferable for that.

From a simple consideration of geostrophic balance and cyclostrophic balance, we can obtain
the estimate of S as a function of RT . If we neglect the advection terms and the diffusion terms,
the equation (15) becomes

S2u2 tan φ + 2Su sin φ ∼ −RT
∂Φ

∂φ
. (19)

Here, Rvγ is approximated by S, and β is assumed to be unity. From equation (19), S is approxi-
mated as:

S ∼
{

RT for RT ¿ 1 : geostrophic balance√
RT for RT À 1 : cyclostrophic balance

. (20)

Even when RT ∼ 1, this can be applied as:

S ∼
{

RT for RT ≤ 1√
RT for RT > 1

, (21)

in Fig.4 (solid line). Equation (21) is a good estimate over a wide parametric range of RT , when
EV is small and EH is large. We should note that above estimation corresponds to the argument
on thermal wind balance of the Earth type and the Venus type done by M80 (his equation 3.13)

A measure of rigid rotation

The second index is a measure of rigid rotation, Rg, defined as the ratio of the rigid rotation
component of the kinetic energy of the zonal wind to the zonal kinetic energy at the top boundary,

Rg ≡ rigid rotation component of KE of the zonal wind

KE of the zonal wind

∣∣∣∣
z=H

=
2|ψ1|2∑

n(n + 1)|ψn|2

∣∣∣∣
z=H

, (22)

where ψn (n = 1, 2, · · ·) is a Legendre polynomial expansion coefficient of the horizontal stream-
function. Figure 5 shows the dependence of Rg on EH for five combinations of RT and EV . When
EH is very large, Rg is nearly unity; namely the zonal wind field is almost rigid rotation. The
zonal wind at the top boundary for the case (vi) in Fig.6 shows such a rigid rotation state. In
contrast, when EH is very small, Rg takes a certain constant value which depends mostly on RT .
This solution corresponds to the HH type Hadley circulation as shown by Fig.6 (i). The circulation
changes largely from the HH type solution to the rigid rotation state in a certain range of EH as
(ii)-(v) in Fig.5. The zonal wind increases at low latitudes in the cases for this range as shown in
Fig.6.

An approximate position of the transition in Fig.5 where the circulation type changes from the
HH type to rigid rotation can be estimated with the u-momentum equation (1), whose terms in left
hand side are rewritten with absolute angular momentum per unit mass, M ≡ a2Ω cos2 φ+ua cos φ,

1

a cos φ
∇ · (vM) = νHDH(u) + νV

∂2u

∂z2
, (23)
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Fig. 4: The dependence of the intensity of super-rotation S on the external thermal Rossby number
RT , for some combinations of the horizontal Ekman number EH and the vertical Ekman number
EV . The solid line represents the estimate of S under the assumption of geostrophic balance and
cyclostrophic balance.

where v ≡ (v, w) is the velocity, and ∇ ≡ [(a cos φ)−1∂(cos φ )/∂φ, ∂/∂z] is the gradient operator
in the meridional plane. When νH is small enough, the balance between the flux divergence term
and the vertical diffusion term is dominant for the HH type Hadley circulation. As νH increase,
the second term in equation (23) becomes large. It is expected that the transition takes place
when the horizontal diffusion term is comparable to the vertical diffusion term. The magnitude
of the horizontal diffusion term in the HH type circulation is estimated as follows. Outside the
Hadley cell, zonal wind field is in a rigid rotation state as uE = aΩ[(1 + 2RT z/H)1/2 − 1] cos φ,
because of the thermal wind balance to the radiative equilibrium potential temperature field, and
the horizontal diffusion term becomes zero. In the Hadley cell, on the other hand, zonal winds at
the top boundary are determined by the angular momentum conservation as uM = aΩ sin2 φ/ cos φ.
Therefore, the magnitude of the horizontal diffusion term in the HH type circulation is the order
of νHaΩ/a2, so the transition takes place when

νH
aΩ

a2
∼ νV

U

H2
, (24)

so that
EH ∼ EV S. (25)

The relationship (21) is used for the value of S to estimate the position of the transition with
equation (25). Arrows in Fig.5 show the estimates for the combination of RT and EV , and these
points agree well with the transitions.
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6. SUMMARY

Axisymmetric steady solutions of planetary atmospheres are investigated numerically with an ide-
alized system: the primitive equations of Boussinesq fluid forced by a Newtonian heating/cooling.
Transitions from the Held and Hou (HH hereafter) type Hadley circulation to the super-rotation
state driven by the Gierasch mechanism are investigated with a parameter sweep experiment. The
dependence of the solution on the external thermal Rossby number (RT ), the horizontal Ekman
number (EH), and the vertical Ekman number (EV ) are explored.

To analyze the transition dynamically, two indices are introduced: a measure of the intensity
of super-rotation (S) and a measure of rigid rotation (Rg). Assuming geostrophic balance and
cyclostrophic balance, we can estimate the relationship between S and RT as S ∼ RT for RT ≤ 1
and S ∼

√
RT for RT > 1, respectively. This is a good estimate when EH is large enough (∼ 10−1)

as shown in Fig.4. The value of Rg increases largely in a certain range of EH which depends on RT

and EV , then becomes close to unity (Fig.5), showing that the transition of circulation pattern takes
place from the HH type to rigid rotation. An approximate position of this transition is estimated
as EH ∼ EV S, using the HH theory as shown by arrows in Fig.5.

In this study, we focused on the stable steady solutions obtained by time integrations from a sin-
gle initial condition. Matsuda (1980, M80 hereafter) drew the famous regime diagrams of dynamical
balance types for three cases: (i) infinite horizontal diffusion in zonal momentum equation (Fig.2
of M80), (ii) finitely large horizontal diffusion in zonal momentum equation (Fig.9 of M80), (iii)
finitely large horizontal diffusion in zonal and latitudinal momentum equations and thermodynamic
equation (Fig.10 of M80). Now, our study has horizontal diffusion in both zonal and latitudinal mo-
mentum equations but not in thermodynamic equation, so the situation is not identical to (i), (ii),
or (iii). However, in the latitudinal momentum equation, the horizontal diffusion term is much less
than other dominant terms, at least, in our parameter range. Therefore, our study may correspond
to Fig.9 of M80, so that there is a possibility for the existence of multiple equilibrium solutions in
our parameter range. As a next step, it is interesting to explore the multiple equilibrium solutions
including unstable steady ones.
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