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Axisymmetric steady solutions in an idealized 
model of atmospheric general circulations: 
Hadley circulation and super-rotation

1. Introduction

 Held and Hou (1980, HH80 hereafter) studied the dynamics of the Hadley circulation of 
the Earth by using an idealized axisymmetric 2D model with no horizontal eddy diffusion, 
which is known as the Held-Hou model.  On the other hand, the mechanism of the super-
rotation of the Venus was studied by Gierasch (1975).  The essence of the Gierasch 
mechanism is the mean meridional circulation under the large horizontal eddy diffusion.  
The Gierasch mechanism was studied by Matsuda (1980, 1982, M80/82 hereafter) with a 
Boussinesq fluid model.

 Actually, both HH80 and M80/82 used the same system:

• the primitive equations of the Boussinesq fluid with a Newtonian heating/cooling, 
assuming a steady state, and axial and equatorial symmetries.

The main differences between them are the values of the horizontal eddy diffusion 
coefficient (νH) and the angular velocity of the planet (Ω), as follows:

Held and Hou (1980) Matsuda (1980/1982)
νH ZERO VERY LARGE
Ω FAST like the EARTH SLOW like the VENUS


 We explored steady 2D solutions in a very wide parameter range including both HH80 
and M80/82.  We also calculated 3D solutions in the same range, and compared them with 
2D solutions.

The axisymmetric governing equations are: 
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Governing equations

The governing equations used in this study are the primitive equations of

Boussinesq fluid with a Newtonian heating/cooling, under the assumptions

of a steady state (∂/∂t = 0, where t is time), axial symmetry (∂/∂λ = 0,

where λ is longitude), and equatorial symmetry. The equations in spherical

geometry are given by,
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Here u, v, w are the zonal, meridional, and vertical components of the veloc-

ity, Θ is the potential temperature, and Φ ≡ p/ρ, where p is the pressure

and ρ is the density. Independent variables φ and z are the latitude and

hight, respectively. The constants a and Ω are the radius and angular veloc-

ity of the planet, g is the gravitational acceleration, τ is the time constant

for Newtonian heating/cooling, νH and νV are the horizontal and vertical
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Potential temperature in 
radiative equilibrium

diffusion coefficients, κV is the vertical thermal diffusion coeffcient, and α is

the thermal expansion coeffcient.

The quantity Θe in the Newtonian heating/cooling term in equation (3)

is a potential temperature in radiative equilibrium which is given by the form
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)
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where Θ0 is the global mean of Θe, ∆H and ∆V are the fractional change

of potential temperature in radiative equilibrium from equator to pole and

from the top to the bottom, respectively, and P2 is the second Legendre

polynomial P2(x) = (3x2−1)/2. We assume the thermal expansion coeffcient

as α = 1/Θ0.

Horizontal diffusion terms, DH(u) and DH(v), are defined in the form to

conserve angler momentum (Becker, 200111)), as follows:
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A zero stress condition is imposed at the top boundary, at z = H, and

the stress at the ground is taken to be proportional to the surface wind.

Zero vertical heat flux is imposed at both top and bottom boundaries, so
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Horizontal diffusion terms
(Becker, 2001)

boundary conditions are

w =
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∂z
=
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=
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= 0 at z = H, (9)
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where C is a drag coefficient.

Non-dimensionalization

To clarify the dependence of obtained solutions on the external parameters,

we derive non-dimensional form of the governing equations. First, we write

variables as,

u = Uu∗, v = V v∗, w = Ww∗, Θ =Θ 0Θ
∗, and z = Hz∗, (11)

where U, V,W,Θ0, and H are the scaling values, and the asterisk denotes non-

dimensional variables. Considering the hydrostatic equilibrium equation (4)

and its meridional derivative, Φ and ∂Φ/∂φ can be written as

Φ = gHΦ∗,
∂Φ

∂φ
= β∆HgH

∂Φ∗

∂φ
, (12)

where β ≡ (∂Θ/∂φ)/(∂Θe/∂φ) is the ratio between meridional gradient of

potential temperature and that in the radiative equilibrium state. Substi-

tuting (11) and (12) to the governing equations (1)-(5), the non-dimensional
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Boundary conditions

Momentum equations

Thermodynamic equation

Hydrostatic equation

Continuity equation

νV κV

C

Θ0

: vertical momentum diffusion coefficient, : vertical thermal diffusion coefficient,
: drag coefficient,τ : time constant for Newtonian heating/cooling,

: global mean of       ,Θe

: fractional change of      from equator to pole, top to bottom,Θe


 We choose three non-dimensional numbers (RT, EH, EV) for sweep parameters; they are 
defined as 

EV ≡
νV

H2Ω
.RT ≡

gH∆H

a2Ω2
, EH ≡ νH

a2Ω
,


 In a parameter space (RT, EH, EV), we can draw 
the planes which correspond to the parameter 
range of HH80 and Hou (1984),  M80/82, and our 
experiment.  Hou applied the Held-Hou model to 
a slowly rotating planet.

 Note that we choose RT only for a sweep 
parameter of 3D calculations, because eddy 
diffusion terms (∝ EH, EV) in the 2D model 
represent effects of non-axisymmetric large 
eddies in the 3D model.

α = 1/Θ0.

EV

EH

RT

our experiment

M80/82

HH80
Hou 

2D

3D

6. Comparison of the Up-gardient Angular
      Momentum Transport in 2D and 3D

5. Dynamical Analysis of 2D Solutions

4. Numerical Results

RT

S

EH=10-1, EV=10-3

EH=10-1, EV=10-2

EH=10-1, EV=10-3

EH=10-1, EV=10-3

3D

: super-rotation intensityS

S ≡ U

aΩ
meridional mean zonal wind at the top

rotation speed of the planet: 

Estimate
S2u2 tanφ + Su sinφ ∼ RT

∂Φ
∂φ

Cyclostrophic balance

Geostrophic balance
S ∼ RT (RT ! 1)

(RT ! 1)S ∼
√

RT

super-rotation

: measure of rigid rotationRg

Rg
rigid rotation component of zonal KE at the top

zonal KE at the top
: 

EH

Rg Held-Hou type

Rigid rotation type

νH
aΩ
a2
∼ νV

U

H2

EH ∼ EV S

From the zonal wind 
distribution of the Held-
Hou theory, the magnitude 
of the horizontal diffusion 
is estimated as 

νHaΩ/a2

Considering the balance 
of the absoute angular 
momentum equation, 
“Transition” of the 
circulation type will 
occur when

:

Estimate

EH ∼ EV S

RT=10-1 RT=101 RT=103RT=102

3D: Eddy angular momentum flux                      and its convergence
2D: Eddy horizontal angular momentum diffusion 

(M ′v′,M ′w′) − 1
a cos φ

∂

∂φ
(M ′v′ cos φ)− ∂

∂φ
(M ′w′)

DH(u)a cos φ

Distributions of the terms which can transport an angular momentum up-gradient are shown.  
The cases of 2D which have the nearest zonal wind distribution to the 3D solutions are 
shown here.  In the 3D solutions, there is momentum transport to low latitudes when RT is 
large (the rotation is slow).  However, its distribution is not as simple as 2D horizontal 
diffusion.  This momentum transport is caused by the BAROTROPIC  INSTABILITY.  When 
RT is small, in mid-latitudes, there is momentum transport which are caused by the baroclinic 
instability, but they are not represented in the 2D model.

EH=10-3 EH=10-3EH=10-10 EH=10-2.5

References
Gierasch, P. J. : Meridional circulation and maintenance of the Venus atmospheric rotation, JAS, 32, 1038-1044, 1975
Held, I. M. and A. Y. Hou : Nonlinear axially symmetric circulation in a nearly inviscid atmosphere, JAS, 37, 515-533, 1980
Matsuda, Y. : Dynamics of the four-day circulation in the Venus atmosphere, JMSJ, 58, 443-470, 1980
Matsuda, Y. : A further study of dynamics of the four-day circulation in the Venus atmosphere, JMSJ, 60, 245-254, 1982
A. Y. Hou : Axisymmetric circulations forced by heat and momentum sources : a simple model applicable to the Venus 
atmosphere, JAS, 41, 3437-3455, 1984
Becker, E. : Symmetric stress tensor formulation of horizontal momentum diffusion in global models of atmospheric 
circulation, JAS, 58, 269-282, 2001

SUMMARY:  We explored steady axisymmetric (2D) solutions of primitive equations of the Boussinesq fluid in a very wide parameter range 
including both Held and Hou (1980) on the study of the Hadley circulation and Matsuda (1980, 1982) on the study of the super-rotation. 
We estimated the values of parameters when the “transition” of the circulation type occurs.  Furthermore, non-axisymmetric (3D) solutions 
were calculated and were compared with 2D solutions.  In 3D solutions, when the planet rotation is slow, there is angular momentum 
transport to low latitudes as Matsuda assumed, but its meridional distribution is not as simple as a horizontal eddy diffusion in the 2D model.
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