The NetCDF C Interface Guide

NetCDF Version 4.0-betal
Last Updated 23 April 2007

Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, and Ed Hartne
Unidata Program Center

Copyright (©) 2005-2006 University Corporation for Atmospheric Research

Permission is granted to make and distribute verbatim copies of this manual provided that
the copyright notice and these paragraphs are preserved on all copies. The software and any
accompanying written materials are provided “as is” without warranty of any kind. UCAR
expressly disclaims all warranties of any kind, either expressed or implied, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation. Any opinions, findings, con-
clusions, or recommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an
endorsement by the Unidata Program Center. Unidata does not authorize any use of
information from this publication for advertising or publicity purposes.

Table of Contents

1 Use of the NetCDF Library 3
1.1 Creating a NetCDF Dataset......... 3
1.2 Reading a NetCDF Dataset with Known Names 4
1.3 Reading a netCDF Dataset with Unknown Names 4
1.4 Adding New Dimensions, Variables, Attributes 6
1.5 Error Handling.......... 7
1.6 Compiling and Linking with the NetCDF Library.............. 7

2 Datasetscoiiiiiiiiiiiiiiiiii 9
2.1 NetCDF Library Interface Descriptions 9
2.2 Parallel Access for NetCDF Files 10
2.3 Get error message corresponding to error status: nc_strerror... 12
2.4 Get netCDF library version: nc_inq_libvers................... 13
2.5 Create a NetCDF Dataset: nc_create 13
2.6 Create a NetCDF Dataset With Performance Options: nc__create

... 15
2.7 Create a NetCDF Dataset With Performance Options:

NC_CTEALE_ DAL . . . ottt 17
2.8 Open a NetCDF Dataset for Access: nc_open................. 19
2.9 Open a NetCDF Dataset for Access with Performance Tuning:

0 G o) 1< o K 20
2.10 Open a NetCDF Dataset for Parallel Access................. 21
2.11 Put Open NetCDF Dataset into Define Mode: nc_redef 22
2.12 Leave Define Mode: nc_enddef 23
2.13 Leave Define Mode with Performance Tuning: nc__enddef.... 24
2.14 Close an Open NetCDF Dataset: nc_close................... 26
2.15 Inquire about an Open NetCDF Dataset: nc_inq Family. 27
2.16 Synchronize an Open NetCDF Dataset to Disk: nc_sync 28
2.17 Back Out of Recent Definitions: nc_abort 30
2.18 Set Fill Mode for Writes: nc_set _fill......................... 31
2.19 Set Default Creation Format: nc_set_default_format 32

S GroUPS. ...ttt tiiiiniiiiinineeeeeens 35
3.1 Find a Group ID: nc_inq_ncid 35
3.2 Get a List of Groups in a Group: nc_ing-grps 36
3.3 Find all the Variables in a Group: nc_inq_varids.............. 37
3.4 Find all Dimensions Visible in a Group: nc_inq_dimids........ 38
3.5 Find the Length of a Group’s Name: nc_inq_grpname_len 39
3.6 Find a Group’s Name: nc_inq_grpname 39
3.7 Find a Group’s Parent: nc_inq_grp_parent 40
3.8 Find a Group’s ncid: nc_inq_grp-ncid........................ 41

3.9 Create a New Group: nc.def_grp............................ 42

ii NetCDF C Interface Guide

4 DimensionS...........cceeeeeuuuunnnnnenns 45
4.1 Dimensions Introduction.................................... 45
4.2 Create a Dimension: nc.def_dim............................. 45
4.3 Get a Dimension ID from Its Name: nc_inq_dimid 46
4.4 Inquire about a Dimension: nc_inq_-dim Family 47
4.5 Rename a Dimension: nc_rename_dim 48
4.6 Find All Unlimited Dimension IDs: nc_inq-unlimdims. 49

5 User Defined Data Types 51
5.1 Compound Types Introduction 51
5.2 Creating a Compound Type: nc_def_compound............... 51
5.3 Inserting a Field into a Compound Type: nc_insert_compound

... 52
5.4 Learn About a Compound Type: nc_inq_compound........... 53
5.5 Find the Name of a Field in a Compound Type:

nc_ing_compound_fieldname 54
5.6 Get the FieldID of a Compound Type Field:

nc_ing_compound _fieldindex L 54
5.7 Get the Offset of a Field: nc_inq_-compound_fieldoffset 55
5.8 Find the Type of a Field: nc_inq_compound_fieldtype......... 56
5.9 Variable Length Array Introduction.......................... 56
5.10 Define a Variable Length Array (VLEN): nc_def_vlen 57
5.11 Learning about a Variable Length Array (VLEN) Type:

NC_INQ_VIEN . ..o 58
5.12 Opaque Type Introduction................................. 59
5.13 Creating Opaque Types: nc_def_opaque..................... 59
5.14 Learn About an Opaque Type: nc_inq_opaque............... 59
5.15 Enum Type Introduction 60

6 Variables.............. ..., 61
6.1 Introduction i 61
6.2 Language Types Corresponding to netCDF external data types

... 61
6.3 NetCDF-3 Classic and 64-Bit Offset Data Types.............. 62
6.4 NetCDF-4 Atomic Types ... 62
6.5 Create a Variable: nc_def _var.............................. 63
6.6 Define Chunking Parameters for a Variable:

nc_def_var_chunking 65
6.7 Learn About Chunking Parameters for a Variable:

nc_ing_var_chunkingooiiiiiiiiii.. 66
6.8 Define Compression Parameters for a Variable:

nc_def_var_deflate 67
6.9 Learn About Deflate Parameters for a Variable:

nc_ing var_deflate i 68

6.10 Define Fletcher32 Parameters for a Variable:
nc_def_var_fletcher32....... 69

6.11 Learn About Fletcher32 Parameters for a Variable:

nc_ing_var_fletcher32........ 70
6.12 Define Endianness of a Variable: nc_def_var_endian........ 70
6.13 Learn About Endian Parameters for a Variable:

nc_ing var_endian 71
6.14 Get a Variable ID from Its Name: nc_ing_varid.............. 72
6.15 Get Information about a Variable from Its ID: nc_inq_var 73
6.16 Write a Single Data Value: nc_put_varl_ type............... 74
6.17 Write an Entire Variable: nc_put_var_ type 7
6.18 Write an Array of Values: nc_put_vara_ type................ 78
6.19 Write a Subsampled Array of Values: nc_put_vars_ type...... 81
6.20 Write a Mapped Array of Values: nc_put_varm_ type 83
6.21 Read a Single Data Value: nc_get_varl_ type................ 87
6.22 Read an Entire Variable nc_get_var_ type 89
6.23 Read an Array of Values: nc_get_vara_ type................. 90
6.24 Read a Subsampled Array of Values: nc_get_vars_ type 92
6.25 Read a Mapped Array of Values: nc_get_varm_ type......... 95
6.26 Reading and Writing Character String Values 98
6.27 Fill Values......... ... 100
6.28 Rename a Variable: nc_rename_var........................ 100
6.29 Change between Collective and Independent Parallel Access:

NC_VAT _PAT_ACCESS .« + v et ettt ettt e e e e e e e e e e 101

7 Attributes.............. i i il 105
7.1 Introduction i 105
7.2 Create an Attribute: nc_put_att_ type...................... 105
7.3 Get Information about an Attribute: nc_ing_att Family 108
7.4 Get Attribute’s Valuesic_get_att_ type..................... 110
7.5 Copy Attribute from One NetCDF to Another: nc_copy_att .. 112
7.6 Rename an Attribute: nc_rename_att 113
7.7 Delete an Attribute: nc_del_att................. 114
Appendix A Summary of C Interface....... 117

Appendix B NetCDF 3 Transition Guide... 123

Appendix C NetCDF-3 Error Codes 125

Appendix D NetCDF-4 Error Codes 127

8 IndeX ..vvivi ittt ittt ieeieeennns 129

iii

iv

NetCDF C Interface Guide

This document describes the C interface to the netCDF library; it applies to netCDF
version 4.0-betal and was last updated on 23 April 2007.

For a complete description of the netCDF format and utilities see section “Top” in The
NetCDEF Users Guide.

NetCDF C Interface Guide

Chapter 1: Use of the NetCDF Library 3

1 Use of the NetCDF Library

You can use the netCDF library without knowing about all of the netCDF interface. If you
are creating a netCDF dataset, only a handful of routines are required to define the necessary
dimensions, variables, and attributes, and to write the data to the netCDF dataset. (Even
less are needed if you use the ncgen utility to create the dataset before running a program
using netCDF library calls to write data.) Similarly, if you are writing software to access
data stored in a particular netCDF object, only a small subset of the netCDF library is
required to open the netCDF dataset and access the data. Authors of generic applications
that access arbitrary netCDF datasets need to be familiar with more of the netCDF library.

In this chapter we provide templates of common sequences of netCDF calls needed for
common uses. For clarity we present only the names of routines; omit declarations and error
checking; omit the type-specific suffixes of routine names for variables and attributes; indent
statements that are typically invoked multiple times; and use ... to represent arbitrary
sequences of other statements. Full parameter lists are described in later chapters.

1.1 Creating a NetCDF Dataset

Here is a typical sequence of netCDF calls used to create a new netCDF dataset:

nc_create /* create netCDF dataset: enter define mode */
ncL&éf_dim /* define dimensions: from name and length */
ncLééf_var /* define variables: from name, type, ... */
nc;éﬁt_att /* put attribute: assign attribute values */

nc_enéééf /* end definitions: leave define mode */
nc;éﬁt_var /* provide values for variables */

nc_close /* close: save new netCDF dataset */

Only one call is needed to create a netCDF dataset, at which point you will be in
the first of two netCDF modes. When accessing an open netCDF dataset, it is either
in define mode or data mode. In define mode, you can create dimensions, variables, and
new attributes, but you cannot read or write variable data. In data mode, you can access
data and change existing attributes, but you are not permitted to create new dimensions,
variables, or attributes.

One call to nc_def_dim is needed for each dimension created. Similarly, one call to
nc_def_var is needed for each variable creation, and one call to a member of the nc_put_att
family is needed for each attribute defined and assigned a value. To leave define mode and
enter data mode, call nc_enddef.

Once in data mode, you can add new data to variables, change old values, and change
values of existing attributes (so long as the attribute changes do not require more storage
space). Single values may be written to a netCDF variable with one of the members of the
nc_put_varl family, depending on what type of data you have to write. All the values of a

4 NetCDF C Interface Guide

variable may be written at once with one of the members of the nc_put_var family. Arrays
or array cross-sections of a variable may be written using members of the nc_put_vara fam-
ily. Subsampled array sections may be written using members of the nc_put_vars family.
Mapped array sections may be written using members of the nc_put_varm family. (Sub-
sampled and mapped access are general forms of data access that are explained later.)

Finally, you should explicitly close all netCDF datasets that have been opened for writing
by calling nc_close. By default, access to the file system is buffered by the netCDF library.
If a program terminates abnormally with netCDF datasets open for writing, your most
recent modifications may be lost. This default buffering of data is disabled by setting the
NC_SHARE flag when opening the dataset. But even if this flag is set, changes to attribute
values or changes made in define mode are not written out until nc_sync or nc_close is

called.

1.2 Reading a NetCDF Dataset with Known Names

Here we consider the case where you know the names of not only the netCDF datasets, but
also the names of their dimensions, variables, and attributes. (Otherwise you would have
to do "inquire" calls.) The order of typical C calls to read data from those variables in a
netCDF dataset is:

nc_open /* open existing netCDF dataset */
nc;iﬁq_dimid /* get dimension IDs */
nc;iﬁq_varid /* get variable IDs */
nc;éét_att /* get attribute values */
nc_get_var /* get values of variables */
nc_clééé /* close netCDF dataset */

First, a single call opens the netCDF dataset, given the dataset name, and returns a
netCDF ID that is used to refer to the open netCDF dataset in all subsequent calls.

Next, a call to nc_inq-dimid for each dimension of interest gets the dimension ID from
the dimension name. Similarly, each required variable ID is determined from its name by a
call to nc_inq_varid Once variable IDs are known, variable attribute values can be retrieved
using the netCDF ID, the variable ID, and the desired attribute name as input to a member
of the nc_get_att family (typically nc_get_att_text or nc_get_att_double) for each desired
attribute. Variable data values can be directly accessed from the netCDF dataset with
calls to members of the nc_get_varl family for single values, the nc_get_var family for entire
variables, or various other members of the nc_get_vara, nc_get_vars, or nc_get_varm families
for array, subsampled or mapped access.

Finally, the netCDF dataset is closed with nc_close. There is no need to close a dataset
open only for reading.

Chapter 1: Use of the NetCDF Library 5)

1.3 Reading a netCDF Dataset with Unknown Names

It is possible to write programs (e.g., generic software) which do such things as processing
every variable, without needing to know in advance the names of these variables. Similarly,
the names of dimensions and attributes may be unknown.

Names and other information about netCDF objects may be obtained from netCDF
datasets by calling inquire functions. These return information about a whole netCDF
dataset, a dimension, a variable, or an attribute. The following template illustrates how
they are used:

nc_open /* open existing netCDF dataset */
nc;iﬁq /* find out what is in it */
nc_inqg_dim /* get dimension names, lengths */
nc;iﬁq_var /* get variable names, types, shapes */
nc_ing_attname /* get attribute names */
nc;iﬁq_att /* get attribute types and lengths */
nc;éét_att /* get attribute values */
nc_get_var /* get values of variables */
nc_clééé /* close netCDF dataset */

As in the previous example, a single call opens the existing netCDF dataset, returning
a netCDF ID. This netCDF ID is given to the nc_inq routine, which returns the number
of dimensions, the number of variables, the number of global attributes, and the ID of the
unlimited dimension, if there is one.

All the inquire functions are inexpensive to use and require no I/O, since the information
they provide is stored in memory when a netCDF dataset is first opened.

Dimension IDs use consecutive integers, beginning at 0. Also dimensions, once created,
cannot be deleted. Therefore, knowing the number of dimension IDs in a netCDF dataset
means knowing all the dimension IDs: they are the integers 0, 1, 2, ...up to the number of
dimensions. For each dimension ID, a call to the inquire function nc_inq_dim returns the
dimension name and length.

Variable IDs are also assigned from consecutive integers 0, 1, 2, ... up to the number of
variables. These can be used in nc_ing_var calls to find out the names, types, shapes, and
the number of attributes assigned to each variable.

Once the number of attributes for a variable is known, successive calls to nc_ing-attname
return the name for each attribute given the netCDF ID, variable ID, and attribute number.
Armed with the attribute name, a call to nc_inq_att returns its type and length. Given the
type and length, you can allocate enough space to hold the attribute values. Then a call to
a member of the nc_get_att family returns the attribute values.

6 NetCDF C Interface Guide

Once the IDs and shapes of netCDF variables are known, data values can be accessed by
calling a member of the nc_get_varl family for single values, or members of the nc_get_var,
nc_get_vara, nc_get_vars, or nc_get_varm for various kinds of array access.

1.4 Adding New Dimensions, Variables, Attributes

An existing netCDF dataset can be extensively altered. New dimensions, variables, and
attributes can be added or existing ones renamed, and existing attributes can be deleted.
Existing dimensions, variables, and attributes can be renamed. The following code template
lists a typical sequence of calls to add new netCDF components to an existing dataset:

nc_open /* open existing netCDF dataset */
nc;éédef /* put it into define mode */
nc;aéf_dim /* define additional dimensions (if any) */
nc;ééf_var /* define additional variables (if any) */
nc;éﬁt_att /* define additional attributes (if any) */
nc_eﬁééef /* check definitions, leave define mode */
nc;éﬁt_var /* provide values for new variables */
nc_ciéée /* close netCDF dataset */

A netCDF dataset is first opened by the nc_open call. This call puts the open dataset
in data mode, which means existing data values can be accessed and changed, existing
attributes can be changed (so long as they do not grow), but nothing can be added. To add
new netCDF dimensions, variables, or attributes you must enter define mode, by calling
nc_redef. In define mode, call nc_def_dim to define new dimensions, nc_def_var to define
new variables, and a member of the nc_put_attfamily to assign new attributes to variables
or enlarge old attributes.

You can leave define mode and reenter data mode, checking all the new definitions for
consistency and committing the changes to disk, by calling nc_enddef. If you do not wish
to reenter data mode, just call nc_close, which will have the effect of first calling nc_enddef.

Until the nc_enddef call, you may back out of all the redefinitions made in define mode
and restore the previous state of the netCDF dataset by calling nc_abort. You may also use
the nc_abort call to restore the netCDF dataset to a consistent state if the call to nc_enddef
fails. If you have called nc_close from definition mode and the implied call to nc_enddef
fails, nc_abort will automatically be called to close the netCDF dataset and leave it in its
previous consistent state (before you entered define mode).

At most one process should have a netCDF dataset open for writing at one time. The
library is designed to provide limited support for multiple concurrent readers with one
writer, via disciplined use of the nc_sync function and the NC_SHARE flag. If a writer makes
changes in define mode, such as the addition of new variables, dimensions, or attributes,

Chapter 1: Use of the NetCDF Library 7

some means external to the library is necessary to prevent readers from making concurrent
accesses and to inform readers to call nc_sync before the next access.

1.5 Error Handling

The netCDF library provides the facilities needed to handle errors in a flexible way. Each
netCDF function returns an integer status value. If the returned status value indicates an
error, you may handle it in any way desired, from printing an associated error message and
exiting to ignoring the error indication and proceeding (not recommended!). For simplicity,
the examples in this guide check the error status and call a separate function, handle_err(),
to handle any errors. One possible definition of handle_err() can be found withdin the
documentation of nc_strerror (see Section 2.3 [nc_strerror|, page 12).

The nc_strerror function is available to convert a returned integer error status into an
error message string.

Occasionally, low-level I/O errors may occur in a layer below the netCDF library. For
example, if a write operation causes you to exceed disk quotas or to attempt to write to
a device that is no longer available, you may get an error from a layer below the netCDF
library, but the resulting write error will still be reflected in the returned status value.

1.6 Compiling and Linking with the NetCDF Library

Details of how to compile and link a program that uses the netCDF C or FORTRAN
interfaces differ, depending on the operating system, the available compilers, and where the
netCDF library and include files are installed. Nevertheless, we provide here examples of
how to compile and link a program that uses the netCDF library on a Unix platform, so
that you can adjust these examples to fit your installation.

Every C file that references netCDF functions or constants must contain an appropriate
#include statement before the first such reference:

#include <netcdf.h>

Unless the netcdf.h file is installed in a standard directory where the C compiler always
looks, you must use the -I option when invoking the compiler, to specify a directory where
netcdf.h is installed, for example:

cc -¢ -I/usr/local/netcdf/include myprogram.c

Alternatively, you could specify an absolute path name in the #include statement, but
then your program would not compile on another platform where netCDF is installed in a
different location.

Unless the netCDF library is installed in a standard directory where the linker always
looks, you must use the -L. and -1 options to link an object file that uses the netCDF library.
For example:

cc -o myprogram myprogram.o -L/usr/local/netcdf/lib -lnetcdf
Alternatively, you could specify an absolute path name for the library:

cc -o myprogram myprogram.o -l/usr/local/netcdf/lib/libnetcdf.a

NetCDF C Interface Guide

Chapter 2: Datasets 9

2

Datasets

This chapter presents the interfaces of the netCDF functions that deal with a netCDF
dataset or the whole netCDF library.

A netCDF dataset that has not yet been opened can only be referred to by its dataset

name. Once a netCDF dataset is opened, it is referred to by a netCDF ID, which is a small
nonnegative integer returned when you create or open the dataset. A netCDF ID is much
like a file descriptor in C or a logical unit number in FORTRAN. In any single program,
the netCDF IDs of distinct open netCDF datasets are distinct. A single netCDF dataset
may be opened multiple times and will then have multiple distinct netCDF IDs; however
at most one of the open instances of a single netCDF dataset should permit writing. When

an

open netCDF dataset is closed, the ID is no longer associated with a netCDF dataset.
Functions that deal with the netCDF library include:
Get version of library.

Get error message corresponding to a returned error code.

The operations supported on a netCDF dataset as a single object are:
Create, given dataset name and whether to overwrite or not.
Open for access, given dataset name and read or write intent.
Put into define mode, to add dimensions, variables, or attributes.
Take out of define mode, checking consistency of additions.
Close, writing to disk if required.

Inquire about the number of dimensions, number of variables, number of global at-
tributes, and ID of the unlimited dimension, if any.

Synchronize to disk to make sure it is current.
Set and unset nofill mode for optimized sequential writes.

After a summary of conventions used in describing the netCDF interfaces, the rest of
this chapter presents a detailed description of the interfaces for these operations.

2.1 NetCDF Library Interface Descriptions

Each interface description for a particular netCDF function in this and later chapters con-
tains:

a description of the purpose of the function;

a C function prototype that presents the type and order of the formal parameters to
the function;

a description of each formal parameter in the C interface;

a list of possible error conditions; and

an example of a C program fragment calling the netCDF function (and perhaps other
netCDF functions).

The examples follow a simple convention for error handling, always checking the error

status returned from each netCDF function call and calling a handle_error function in case

an

error was detected. For an example of such a function, see Section 2.3 [nc_strerror],

page 12.

10 NetCDF C Interface Guide

2.2 Parallel Access for NetCDF Files

For netCDF-4 files only, parallel read/write access is possible on systems which support it,
and only if parallel HDF5 was installed on the system before netCDF, and only if the HDF5
parallel compiler was used during the netCDF configure. (Parallel HDF5 requires the MPI
library).

To use parallel access, open or create the file with nc_open_par (see Section 2.10
[nc_open_par]|, page 21) or nc_create_par (see Section 2.7 [nc_create_par|, page 17). Only
netCDF-4 files can be opened or created for parallel access.

The following example shows the creation of a file using parallel access, and how a
program might write data to such a file.

#include "netcdf.h"
#include <mpi.h>
#include <assert.h>
#include "hdf5.h"
#include <string.h>
#include <stdlib.h>

#define BAIL(e) do { \

printf("Bailing out in file %s, line %d, error:’%s.\n"
return e; \

} while (0)

FILE __LINE__, nc_strerror

) == il

#define FILE "test_par.nc"

#define NDIMS 2

#define DIMSIZE 24

#define QTR_DATA (DIMSIZE*DIMSIZE/4)
#define NUM_PROC 4

int

main(int argc, char **argv)

{
/* MPI stuff. =/
int mpi_namelen;
char mpi_name [MPI_MAX_PROCESSOR_NAME] ;
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;

/* Netcdf-4 stuff. */
int ncid, vi1id, dimids[NDIMS];
size_t start[NDIMS], count[NDIMS];

int data[DIMSIZE*DIMSIZE], j, i, res;

/* Initialize MPI. */
MPI_Init(&argc,&argv);

Chapter 2: Datasets 11

MPI_Comm_size (MPI_COMM_WORLD, &mpi_size);

MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);

MPI_Get_processor_name (mpi_name, &mpi_namelen) ;

printf ("mpi_name: %s size: %d rank: ’%d\n", mpi_name,
mpi_size, mpi_rank);

/* Create a parallel netcdf-4 file. */
nc_set_log_level (NC_TURN_OFF_LOGGING) ;
nc_set_log_level(3);
if ((res = nc_create_par(FILE, NC_NETCDF4|NC_MPII0O, comm,
info, &ncid)))
BAIL(res);

/* Create two dimensions. */

if ((res = nc_def_dim(ncid, "d1", DIMSIZE, dimids)))
BAIL(res);

if ((res = nc_def_dim(ncid, "d2", DIMSIZE, &dimids[1])))
BAIL(res);

/* Create one var. */
if ((res = nc_def_var(ncid, "vi1", NC_INT, NDIMS, dimids, &vi1id)))
BAIL(res);

if ((res = nc_enddef (ncid)))
BAIL(res);

/* Set up slab for this process. */
start[0] = mpi_rank * DIMSIZE/mpi_size;

start[1] = 0;
count [0] = DIMSIZE/mpi_size;
count[1] = DIMSIZE;

printf ("mpi_rank=Yd start[0]=%d start[1]=)id count[0]=%d count[1]=%d\n",
mpi_rank, start[0], start[1], count[0], count[1]);

/* Create phoney data. We’re going to write a 24x24 array of ints,
in 4 sets of 144. %/
printf ("mpi_rank*QTR_DATA=%d (mpi_rank+1)*QTR_DATA-1=d\n",
mpi_rank*QTR_DATA, (mpi_rank+1)+*QTR_DATA);
for (i=mpi_rank*QTR_DATA; i<(mpi_rank+1)*QTR_DATA; i++)
datal[i] = mpi_rank;

/*if ((res = nc_var_par_access(ncid, v1id, NC_COLLECTIVE)))
BAIL(res) ;*/

if ((res = nc_var_par_access(ncid, v1id, NC_INDEPENDENT)))
BAIL(res);

/* Write slabs of phoney data. */

12 NetCDF C Interface Guide

if ((res = nc_put_vara_int(ncid, vlid, start, count,
&data[mpi_rank*QTR_DATA])))
BAIL(res);

/* Close the netcdf file. */
if ((res = nc_close(ncid)))
BAIL(res);

/* Shut down MPI. x/
MPI_Finalize();

return O;

2.3 Get error message corresponding to error status:
nc_strerror

The function nc_strerror returns a static reference to an error message string corresponding
to an integer netCDF error status or to a system error number, presumably returned by
a previous call to some other netCDF function. The list of netCDF error status codes is
available in the appropriate include file for each language binding.

Usage
const char * nc_strerror(int ncerr);

ncerr An error status that might have been returned from a previous call to some
netCDF function.

Errors

If you provide an invalid integer error status that does not correspond to any netCDF error
message or or to any system error message (as understood by the system strerror function),
nc_strerror returns a string indicating that there is no such error status.

Example

Here is an example of a simple error handling function that uses nc_strerror to print the
error message corresponding to the netCDF error status returned from any netCDF function
call and then exit:

#include <netcdf.h>

void handle_error(int status) {

if (status !'= NC_NOERR) {
fprintf (stderr, "%s\n", nc_strerror(status));
exit(-1);
}

Chapter 2: Datasets 13

2.4 Get netCDF library version: nc_inq_libvers

The function nc_inq_libvers returns a string identifying the version of the netCDF library,
and when it was built.

Usage

const char * nc_ing_libvers(void);

Errors

This function takes no arguments, and thus no errors are possible in its invocation.

Example
Here is an example using nc_ing_libvers to print the version of the netCDF library with
which the program is linked:

#include <netcdf.h>

printf ("%s\n", nc_ing_libvers());

2.5 Create a NetCDF Dataset: nc_create

This function creates a new netCDF dataset, returning a netCDF ID that can subsequently
be used to refer to the netCDF dataset in other netCDF function calls. The new netCDF
dataset opened for write access and placed in define mode, ready for you to add dimensions,
variables, and attributes.

A creation mode flag specifies:
e whether to overwrite any existing dataset with the same name,
e whether access to the dataset is shared,

e whether this file should be in netCDF classic format (the default), the new 64-bit offset
format (use NC_64BIT_OFFSET), or NC_NETCDF4 for a netCDF-4/HDF5 file.

Usage

NOTE: When creating a netCDF-4 file HDF5 error reporting is turned off, if it is on. This
doesn’t stop the HDF5 error stack from recording the errors, it simply stops their display
to the user through stderr.

int nc_create (const char* path, int cmode, int *ncidp);
path The file name of the new netCDF dataset.
cmode The creation mode flag. The following flags are available: NC_NOCLOBBER,
NC_SHARE, NC_64BIT_OFFSET, NC_NETCDF4.

Setting NC_.NOCLOBBER means you do not want to clobber (overwrite) an
existing dataset; an error (NC_EEXIST) is returned if the specified dataset
already exists.

The NC_SHARE flag is appropriate when one process may be writing the
dataset and one or more other processes reading the dataset concurrently; it

14

ncidp

Errors

NetCDF C Interface Guide

means that dataset accesses are not buffered and caching is limited. Since the
buffering scheme is optimized for sequential access, programs that do not ac-
cess data sequentially may see some performance improvement by setting the
NC_SHARE flag.

Setting NC_64BIT_OFFSET causes netCDF to create a 64-bit offset format file,
instead of a netCDF classic format file. The 64-bit offset format imposes far
fewer restrictions on very large (i.e. over 2 GB) data files. See section “Large
File Support” in The NetCDF' Users Guide.

A zero value (defined for convenience as NC_CLOBBER) specifies the default
behavior: overwrite any existing dataset with the same file name and buffer and
cache accesses for efficiency. The dataset will be in netCDF classic format. See
section “NetCDF Classic Format Limitations” in The NetCDF Users Guide.

Setting NC_NETCDF4 causes netCDF to create a HDF5/NetCDF-4 file.

Pointer to location where returned netCDF ID is to be stored.

nc_create returns the value NC_NOERR if no errors occurred. Possible causes of errors

include:

e Passing

a dataset name that includes a directory that does not exist.

e Specifying a dataset name of a file that exists and also specifying NC_NOCLOBBER.

e Specifying a meaningless value for the creation mode.

e Attemp

ting to create a netCDF dataset in a directory where you don’t have permission

to create files.

Return Codes

NC_NOERR
NC_ENOMEM

NC_EHDFERR

NC_EFILEME

No error.
System out of memory.
HDF5 error (netCDF-4 files only).

TA
Error writing netCDF-4 file-level metadata in HDF5 file. (netCDF-4 files only).

Examples

In this example we create a netCDF dataset named foo.nc; we want the dataset to be
created in the current directory only if a dataset with that name does not already exist:

#incl

int s
int n

ude <netcdf.h>

tatus;
cid;

Chapter 2: Datasets 15

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

In this example we create a netCDF dataset named foo_large.nc. It will be in the 64-bit
offset format.

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo_large.nc", NC_NOCLOBBER|NC_64BIT_OFFSET, &ncid);
if (status != NC_NOERR) handle_error(status);

In this example we create a netCDF dataset named foo_HDF5.nc. It will be in the HDF5
format.

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo_HDF5.nc", NC_NOCLOBBER|NC_NETCDF4, &ncid);
if (status != NC_NOERR) handle_error(status);
In this example we create a netCDF dataset named foo_HDF5_classic.nc. It will be in
the HDF5 format, but will not allow the use of any netCDF-4 advanced features. That is,
it will conform to the classic netCDF-3 data model.

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo_HDF5_classic.nc", NC_NOCLOBBER|NC_NETCDF4|NC_CLASSIC_MODEL,

if (status !'= NC_NOERR) handle_error(status);

A variant of nc_create, nc__create (note the double underscore) allows users to specify
two tuning parameters for the file that it is creating. These tuning parameters are not
written to the data file, they are only used for so long as the file remains open after an
nc__create. See Section 2.6 [nc__create], page 15.

2.6 Create a NetCDF Dataset With Performance Options:
nc__create

This function is a variant of nc_create, nc__create (note the double underscore) allows users
to specify two tuning parameters for the file that it is creating. These tuning parameters
are not written to the data file, they are only used for so long as the file remains open after
an nc__create.

This function creates a new netCDF dataset, returning a netCDF ID that can subse-
quently be used to refer to the netCDF dataset in other netCDF function calls. The new
netCDF dataset opened for write access and placed in define mode, ready for you to add
dimensions, variables, and attributes.

&n

16

NetCDF C Interface Guide

A creation mode flag specifies whether to overwrite any existing dataset with the same
name and whether access to the dataset is shared, and whether this file should be in netCDF
classic format (the default), or the new 64-bit offset format.

Usage

int nc__create(const char *path, int cmode, size_t initialsz,

path

cmode

initialsz

size_t *chunksizehintp, int *ncidp);
The file name of the new netCDF dataset.

The creation mode flag. The following flags are available: NC_NOCLOBBER,
NC_SHARE, and NC_64BIT_OFFSET.

Setting NC_ZNOCLOBBER means you do not want to clobber (overwrite) an
existing dataset; an error (NC_EEXIST) is returned if the specified dataset
already exists.

The NC_SHARE flag is appropriate when one process may be writing the
dataset and one or more other processes reading the dataset concurrently; it
means that dataset accesses are not buffered and caching is limited. Since the
buffering scheme is optimized for sequential access, programs that do not ac-
cess data sequentially may see some performance improvement by setting the
NC_SHARE flag.

Setting NC_64BIT_OFFSET causes netCDF to create a 64-bit offset format file,
instead of a netCDF classic format file. The 64-bit offset format imposes far
fewer restrictions on very large (i.e. over 2 GB) data files. See section “Large
File Support” in The NetCDF' Users Guide.

A zero value (defined for convenience as NC_CLOBBER) specifies the default
behavior: overwrite any existing dataset with the same file name and buffer and
cache accesses for efficiency. The dataset will be in netCDF classic format. See
section “NetCDF Classic Format Limitations” in The NetCDF Users Guide.

On some systems, and with custom I/O layers, it may be advantageous to set
the size of the output file at creation time. This parameter sets the initial size
of the file at creation time.

chunksizehintp

The argument referenced by chunksizehintp controls a space versus time trade-
off, memory allocated in the netcdf library versus number of system calls.

Because of internal requirements, the value may not be set to exactly the value
requested. The actual value chosen is returned by reference.

Using the value NC_SIZEHINT_DEFAULT causes the library to choose a de-
fault. How the system chooses the default depends on the system. On many
systems, the "preferred I/O block size" is available from the stat() system call,
struct stat member st_blksize. If this is available it is used. Lacking that, twice
the system pagesize is used.

Lacking a call to discover the system pagesize, we just set default chunksize to
8192.

Chapter 2: Datasets 17

The chunksize is a property of a given open netcdf descriptor ncid, it is not a
persistent property of the netcdf dataset.

ncidp Pointer to location where returned netCDF ID is to be stored.

Errors

nc_create returns the value NC_NOERR if no errors occurred. Possible causes of errors
include:

Passing a dataset name that includes a directory that does not exist.
Specifying a dataset name of a file that exists and also specifying NC_NOCLOBBER.
Specifying a meaningless value for the creation mode.

Attempting to create a netCDF dataset in a directory where you don’t have permission
to create files.

Examples

In

this example we create a netCDF dataset named foo.nc; we want the dataset to be

created in the current directory only if a dataset with that name does not already exist:

be

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

In this example we create a netCDF dataset named foo_large.nc; we want the dataset to
created in the current directory only if a dataset with that name does not already exist.

We also specify that chunksize and initial size for the file.

#include <netcdf.h>

int status;

int ncid;

int intialsz = 2048;
int *chunksize;

*chunksize = 1024;
status = nc__create("foo.nc", NC_NOCLOBBER, initialsz, chunksize, &ncid);
if (status != NC_NOERR) handle_error(status);

2.7 Create a NetCDF Dataset With Performance Options:

nc_create_par

This function is a variant of nc_create, nc_create_par allows users to open a file on a MPI/IO
or MPI/Posix parallel file system.

The parallel parameters are not written to the data file, they are only used for so long

as the file remains open after an nc_create_par.

18 NetCDF C Interface Guide

This function creates a new netCDF dataset, returning a netCDF ID that can subse-
quently be used to refer to the netCDF dataset in other netCDF function calls. The new
netCDF dataset opened for write access and placed in define mode, ready for you to add
dimensions, variables, and attributes.

This function is only available for netCDF-4 files. The creation mode flag must include
NC_NETCDF4.

When a netCDF-4 file is created for parallel access, collective operations are the default.
To use independent access on a variable, See Section 6.29 [nc_var_par_access|, page 101.

Usage

int nc_create_par(const char *path, int cmode, MPI_Comm comm,
MPI_Info info, int ncidp);

path The file name of the new netCDF dataset.
cmode Either the NC_MPIIO or NC_MPIPOSIX flags must be present. The
NC_NETCDF4 flag is also required.

Setting NC_ZNOCLOBBER means you do not want to clobber (overwrite) an
existing dataset; an error (NC_EEXIST) is returned if the specified dataset
already exists.

The NC_SHARE flag is ignored.

comm The MPI_Comm object returned by the MPI layer.

info The MPI_Info object returned by the MPI layer, if MPI/IO is being used, or 0
if MPI/Posix is being used.

ncidp Pointer to location where returned netCDF ID is to be stored.

Return Codes

NC_NOERR No error.
Passing a dataset name that includes a directory that does not exist.

Specifying a dataset name of a file that exists and also specifying
NC_NOCLOBBER.

Specifying a meaningless value for the creation mode.

Attempting to create a netCDF dataset in a directory where you don’t have
permission to create files.

Examples

#include <netcdf.h>

int status;
int ncid;

*chunksize = 1024;

status = nc__create("foo.nc", NC_NOCLOBBER, initialsz, chunksize, &ncid);

if (status != NC_NOERR) handle_error(status);

Chapter 2: Datasets 19

2.8 Open a NetCDF Dataset for Access: nc_open

The function nc_open opens an existing netCDF dataset for access. It determines the
underlying file format automatically. Use the same call to open a netCDF classic, 64-bit
offset, or netCDF-4 file.

Usage
int nc_open (const char *path, int omode, int *ncidp);
path File name for netCDF dataset to be opened.
omode A zero value (or NC_.NOWRITE) specifies the default behavior: open the

dataset with read-only access, buffering and caching accesses for efficiency

Otherwise, the «creation mode is NC_WRITE, NC_SHARE, or
NC_WRITEINC_SHARE. Setting the NC_WRITE flag opens the dataset
with read-write access. ("Writing" means any kind of change to the dataset,
including appending or changing data, adding or renaming dimensions,
variables, and attributes, or deleting attributes.) The NC_SHARE flag is
appropriate when one process may be writing the dataset and one or more
other processes reading the dataset concurrently; it means that dataset
accesses are not buffered and caching is limited. Since the buffering scheme is
optimized for sequential access, programs that do not access data sequentially
may see some performance improvement by setting the NC_SHARE flag.

ncidp Pointer to location where returned netCDF ID is to be stored.

Errors

When opening a netCDF-4 file HDF5 error reporting is turned off, if it is on. This doesn’t
stop the HDF5 error stack from recording the errors, it simply stops their display to the
user through stderr.

nc_open returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The specified netCDF dataset does not exist.

e A meaningless mode was specified.

Return Codes

NC_NOERR No error.
NC_NOMEM Out of memory.

NC_EHDFERR
HDF5 error. (NetCDF-4 files only.)

NC_EDIMMETA
Error in netCDF-4 dimension metadata. (NetCDF-4 files only.)

NC_ENOCOMPOIND
(NetCDF-4 files only.)

20 NetCDF C Interface Guide

Example

Here is an example using nc_open to open an existing netCDF dataset named foo.nc for
read-only, non-shared access:

#include <netcdf.h>
int status;
int ncid;

status = nc_open("foo.nc", 0, &ncid);
if (status != NC_NOERR) handle_error(status);

2.9 Open a NetCDF Dataset for Access with Performance
Tuning: nc__open

A function opens a netCDF dataset for access with an additional performance tuning pa-
rameter.

Usage

int nc__open(const char #*path, int mode, size_t *chunksizehintp, int *ncidp);
path File name for netCDF dataset to be opened.
omode A zero value (or NC_NOWRITE) specifies the default behavior: open the

dataset with read-only access, buffering and caching accesses for efficiency

Otherwise, the «creation mode is NC_WRITE, NC_SHARE, or
NC_WRITE|INC_SHARE. Setting the NC_WRITE flag opens the dataset
with read-write access. ("Writing" means any kind of change to the dataset,
including appending or changing data, adding or renaming dimensions,
variables, and attributes, or deleting attributes.) The NC_SHARE flag is
appropriate when one process may be writing the dataset and one or more
other processes reading the dataset concurrently; it means that dataset
accesses are not buffered and caching is limited. Since the buffering scheme is
optimized for sequential access, programs that do not access data sequentially
may see some performance improvement by setting the NC_SHARE flag.

chunksizehintp
The argument referenced by chunksizehintp controls a space versus time trade-
off, memory allocated in the netcdf library versus number of system calls.

Because of internal requirements, the value may not be set to exactly the value
requested. The actual value chosen is returned by reference.

Using the value NC_SIZEHINT_DEFAULT causes the library to choose a de-
fault. How the system chooses the default depends on the system. On many
systems, the "preferred I/O block size" is available from the stat() system call,
struct stat member st_blksize. If this is available it is used. Lacking that, twice
the system pagesize is used.

Lacking a call to discover the system pagesize, we just set default chunksize to
8192.

Chapter 2: Datasets 21

The chunksize is a property of a given open netcdf descriptor ncid, it is not a
persistent property of the netcdf dataset.

ncidp Pointer to location where returned netCDF ID is to be stored.

Errors

nc__open returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The specified netCDF dataset does not exist.

e A meaningless mode was specified.

Example

Here is an example using nc__open to open an existing netCDF dataset named foo.nc for
read-only, non-shared access:

#include <netcdf.h>
int status;

int ncid;
int *chunksize;

*chunksize = 1024;
status = nc_open("foo.nc", 0, chunksize, &ncid);
if (status != NC_NOERR) handle_error(status);

2.10 Open a NetCDF Dataset for Parallel Access

This function opens a netCDF-4 dataset for parallel access.

This opens the file using either MPI-IO or MPI-POSIX. The file must be a netCDF-4
file. (That is, it must have been created using NC_.NETCDF4 in the creation mode).

This function is only available if netCDF-4 was configured with the —use-parallel option
before being built. Also HDF5 parallel must be installed (before netCDF-4 is installed.)

Before either HDF5 or netCDF-4 can be installed with support for parallel programming,
and MPI layer must also be installed on the machine, and usually a parallel file system.

NetCDF-4 exposes the parallel access functionality of HDF5. For more information
about what is required to install and use the parallel access functions, see the HDF5 web
site.

When a netCDF-4 file is opened for parallel access, collective operations are the default.
To use independent access on a variable, See Section 6.29 [nc_var_par_access|, page 101.
Usage

int nc_open_par(const char #*path, int mode, MPI_Comm comm,
MPI_Info info, int *ncidp);

path File name for netCDF dataset to be opened.

22 NetCDF C Interface Guide

omode Either the NC_MPIIO or NC_MPIPOSIX flags must be present.
The NC_NETCDF4 flag must also be present. For example:
NC_MPIIO INC_NETCDF4.

The flag NC_.WRITE opens the dataset with read-write access. ("Writing"
means any kind of change to the dataset, including appending or changing
data, adding or renaming dimensions, variables, and attributes, or deleting
attributes.)

All other flags are ignored.

comm MPI_Comm object returned by the MPI layer.

info MPI_Info object returned by the MPI layer, or NULL if MPI-POSIX access is
desired.

ncidp Pointer to location where returned netCDF ID is to be stored.

Return Codes

NC_NOERR No error.

NC_ENOTNC4
Not a netCDF-4 file.

The specified netCDF dataset does not exist.

A meaningless mode was specified.

Example
Here is an example using nc_open_par to open an existing netCDF dataset named foo.nc
for read-only, non-shared, MPI/IO access:

#include <netcdf.h>

int status;
int ncid;
int *chunksize;

2.11 Put Open NetCDF Dataset into Define Mode: nc_redef

The function nc_redef puts an open netCDF dataset into define mode, so dimensions, vari-
ables, and attributes can be added or renamed and attributes can be deleted.

Usage

For netCDF-4 files (i.e. files created with NC_NETCDF4 in the cmode, see Section 2.5
[nc_create], page 13), it is not necessary to call nc_redef unless the file was also created
with NC_STRICT_NC3. For straight-up netCDF-4 files, nc_redef is called automatically,
as needed.

For all netCDF-4 files, the root ncid must be used. This is the ncid returned by nc_open
and nc_create, and points to the root of the hierarchy tree for netCDF-4 files.

Chapter 2: Datasets 23

int nc_redef (int ncid);

ncid netCDF ID, from a previous call to nc_open or nc_create.

Errors
nc_redef returns the value NC_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

e The specified netCDF dataset is already in define mode. This error code will only be
returned for classic and 64-bit offset format files.

e The specified netCDF dataset was opened for read-only.
e The specified netCDF ID does not refer to an open netCDF dataset.

Errors

NC_NOERR No error.

NC_EBADID
Bad ncid.

NC_EBADGRPID
The ncid must refer to the root group of the file, that is, the group returned
by nc_open or nc_create. (see Section 2.8 [nc_open|, page 19 see Section 2.5
[nc_create], page 13).

NC_EINDEFINE
Already in define mode.

NC_EPERM File is read-only.

Example

Here is an example using nc_redef to open an existing netCDF dataset named foo.nc and
put it into define mode:

#include <netcdf.h>

int status;
int ncid;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open dataset */
if (status !'= NC_NOERR) handle_error(status);

status = nc_redef (ncid); /* put in define mode */
if (status !'= NC_NOERR) handle_error(status);

2.12 Leave Define Mode: nc_enddef

The function nc_enddef takes an open netCDF dataset out of define mode. The changes
made to the netCDF dataset while it was in define mode are checked and committed to disk
if no problems occurred. Non-record variables may be initialized to a "fill value" as well.

24 NetCDF C Interface Guide

See Section 2.18 [nc_set_fill], page 31. The netCDF dataset is then placed in data mode, so
variable data can be read or written.

It’s not necessary to call nc_enddef for netCDF-4 files. With netCDF-4 files, nc_endef is
called when needed by the netcdf-4 library. User calls to nc_endef for netCDF-4 files still
flush the meatadata to disk.

This call may involve copying data under some circumstances. For a more extensive
discussion see section “File Structure and Performance” in The NetCDF Users Guide.

Usage

int nc_enddef (int ncid);
ncid NetCDF ID, from a previous call to nc_open or nc_create.
Errors

nc_enddef returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The specified netCDF dataset is not in define mode.
e The specified netCDF ID does not refer to an open netCDF dataset.

e The size of one or more variables exceed the size constraints for whichever variant of the
file format is in use). See section “Large File Support” in The NetCDF Users Guide.

Example
Here is an example using nc_enddef to finish the definitions of a new netCDF dataset named
foo.nc and put it into data mode:

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

/* create dimensions, variables, attributes */

status = nc_enddef(ncid); /*leave define modex*/
if (status != NC_NOERR) handle_error(status);

2.13 Leave Define Mode with Performance Tuning:
nc__enddef

The function nc__enddef takes an open netCDF dataset out of define mode. The changes
made to the netCDF dataset while it was in define mode are checked and committed to disk
if no problems occurred. Non-record variables may be initialized to a "fill value" as well.
See Section 2.18 [nc_set_fill], page 31. The netCDF dataset is then placed in data mode, so
variable data can be read or written.

Chapter 2: Datasets 25

This call may involve copying data under some circumstances. For a more extensive
discussion see section “File Structure and Performance” in The NetCDF' Users Guide.

Caution: this function exposes internals of the netcdf version 1 file format. Users should
use nc_enddef in most circumstances. This function may not be available on future netcdf
implementations.

The current netcdf file format has three sections, the "header" section, the data section
for fixed size variables, and the data section for variables which have an unlimited dimension
(record variables).

The header begins at the beginning of the file. The index (offset) of the beginning of
the other two sections is contained in the header. Typically, there is no space between
the sections. This causes copying overhead to accrue if one wishes to change the size of
the sections, as may happen when changing names of things, text attribute values, adding
attributes or adding variables. Also, for buffered i/o, there may be advantages to aligning
sections in certain ways.

The minfree parameters allow one to control costs of future calls to nc_redef, nc_enddef
by requesting that minfree bytes be available at the end of the section.

The align parameters allow one to set the alignment of the beginning of the corresponding
sections. The beginning of the section is rounded up to an index which is a multiple of the
align parameter. The flag value ALIGN_CHUNK tells the library to use the chunksize (see
above) as the align parameter.

The file format requires mod 4 alignment, so the align parameters are silently rounded
up to multiples of 4. The usual call,

nc_enddef (ncid) ;
is equivalent to
nc__enddef (ncid, 0, 4, 0, 4);

The file format does not contain a "record size" value, this is calculated from the sizes
of the record variables. This unfortunate fact prevents us from providing minfree and
alignment control of the "records" in a netcdf file. If you add a variable which has an
unlimited dimension, the third section will always be copied with the new variable added.

Usage

int nc__enddef (int ncid, size_t h_minfree, size_t v_align,
size_t v_minfree, size_t r_align);

ncid NetCDF ID, from a previous call to nc_open or nc_create.

h_minfree
Sets the pad at the end of the "header" section.

v_align Controls the alignment of the beginning of the data section for fixed size vari-
ables.

v_minfree
Sets the pad at the end of the data section for fixed size variables.

r_align Controls the alignment of the beginning of the data section for variables which
have an unlimited dimension (record variables).

26 NetCDF C Interface Guide

Errors
nc__enddef returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The specified netCDF dataset is not in define mode.

e The specified netCDF ID does not refer to an open netCDF dataset.

e The size of one or more variables exceed the size constraints for whichever variant of the
file format is in use). See section “Large File Support” in The NetCDF Users Guide.

Example
Here is an example using nc_enddef to finish the definitions of a new netCDF dataset named
foo.nc and put it into data mode:

#include <netcdf.h>

int status;

int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

/* create dimensions, variables, attributes */

status = nc_enddef(ncid); /*leave define modex*/
if (status != NC_NOERR) handle_error(status);

2.14 Close an Open NetCDF Dataset: nc_close

The function nc_close closes an open netCDF dataset.

If the dataset in define mode, nc_enddef will be called before closing. (In this case, if
nc_enddef returns an error, nc_abort will automatically be called to restore the dataset to
the consistent state before define mode was last entered.) After an open netCDF dataset
is closed, its netCDF ID may be reassigned to the next netCDF dataset that is opened or
created.

Usage
For netCDF-4 files, the ncid of the root group must be passed into nc_close.
int nc_close(int ncid);

ncid NetCDF 1D, from a previous call to nc_open or nc_create.

Errors
nc_close returns the value NC_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

e Define mode was entered and the automatic call made to nc_enddef failed.

e The specified netCDF ID does not refer to an open netCDF dataset.

Chapter 2: Datasets 27

NC_NOERR No error.

NC_EBADID
Invalid id passed.

NC_EBADGRPID
ncid did not contain the root group id of this file. (NetCDF-4 only).

Example

Here is an example using nc_close to finish the definitions of a new netCDF dataset named
foo.nc and release its netCDF ID:

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

/* create dimensions, variables, attributes */

status = nc_close(ncid); /* close netCDF dataset */
if (status != NC_NOERR) handle_error(status);

2.15 Inquire about an Open NetCDF Dataset: nc_inq
Family

Members of the nc_inq family of functions return information about an open netCDF
dataset, given its netCDF ID. Dataset inquire functions may be called from either define
mode or data mode. The first function, nc_inq, returns values for the number of dimen-
sions, the number of variables, the number of global attributes, and the dimension ID of
the dimension defined with unlimited length, if any. The other functions in the family each
return just one of these items of information.

For C, these functions include nc_inqg, nc_ing_ndims, nc_ing_nvars, nc_inq_natts, and
nc_inq_unlimdim. An additional function, nc_inq_format, returns the (rarely needed) for-
mat version.

No I/O is performed when these functions are called, since the required information is
available in memory for each open netCDF dataset.

Usage
int nc_ing (int ncid, int *ndimsp, int *nvarsp, int *ngattsp,
int *unlimdimidp) ;
int nc_ing_ndims (int ncid, int *ndimsp);
int nc_inqg_nvars (int ncid, int *nvarsp);
int nc_ing_natts (int ncid, int *ngattsp);

int nc_ing_unlimdim (int ncid, int *unlimdimidp);
int nc_inq_format (int ncid, int *formatp);

28 NetCDF C Interface Guide

ncid NetCDF ID, from a previous call to nc_open or nc_create.

ndimsp Pointer to location for returned number of dimensions defined for this netCDF
dataset.

nvarsp Pointer to location for returned number of variables defined for this netCDF
dataset.

ngattsp Pointer to location for returned number of global attributes defined for this
netCDF dataset.

unlimdimidp
Pointer to location for returned ID of the unlimited dimension, if there is one

for this netCDF dataset. If no unlimited length dimension has been defined, -1
is returned.

formatp Pointer to location for returned format version, one of NC_FORMAT_CLASSIC,
NC_FORMAT_64BIT, NC_.FORMAT_NETCDF4, NC_.FORMAT _NETCDF4_CLASSIC.

Errors
All members of the nc_ing family return the value NC_NOERR if no errors occurred. Oth-
erwise, the returned status indicates an error. Possible causes of errors include:

e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_inq to find out about a netCDF dataset named foo.nc:
#include <netcdf.h>

int status, ncid, ndims, nvars, ngatts, unlimdimid;

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_inq(ncid, &ndims, &nvars, &ngatts, &unlimdimid);
if (status != NC_NOERR) handle_error(status);

2.16 Synchronize an Open NetCDF Dataset to Disk:
nc_sync
The function nc_sync offers a way to synchronize the disk copy of a netCDF dataset with
in-memory buffers. There are two reasons you might want to synchronize after writes:
e To minimize data loss in case of abnormal termination, or

e To make data available to other processes for reading immediately after it is written.
But note that a process that already had the dataset open for reading would not see
the number of records increase when the writing process calls nc_sync; to accomplish
this, the reading process must call nc_sync.

This function is backward-compatible with previous versions of the netCDF library. The
intent was to allow sharing of a netCDF dataset among multiple readers and one writer, by

Chapter 2: Datasets 29

having the writer call nc_sync after writing and the readers call nc_sync before each read.
For a writer, this flushes buffers to disk. For a reader, it makes sure that the next read
will be from disk rather than from previously cached buffers, so that the reader will see
changes made by the writing process (e.g., the number of records written) without having
to close and reopen the dataset. If you are only accessing a small amount of data, it can be
expensive in computer resources to always synchronize to disk after every write, since you
are giving up the benefits of buffering.

An easier way to accomplish sharing (and what is now recommended) is to have the writer
and readers open the dataset with the NC_SHARE flag, and then it will not be necessary to
call nc_sync at all. However, the nc_sync function still provides finer granularity than the
NC_SHARE flag, if only a few netCDF accesses need to be synchronized among processes.

It is important to note that changes to the ancillary data, such as attribute values, are
not propagated automatically by use of the NC_.SHARE flag. Use of the nc_sync function
is still required for this purpose.

Sharing datasets when the writer enters define mode to change the data schema requires
extra care. In previous releases, after the writer left define mode, the readers were left
looking at an old copy of the dataset, since the changes were made to a new copy. The
only way readers could see the changes was by closing and reopening the dataset. Now the
changes are made in place, but readers have no knowledge that their internal tables are now
inconsistent with the new dataset schema. If netCDF datasets are shared across redefinition,
some mechanism external to the netCDF library must be provided that prevents access by
readers during redefinition and causes the readers to call nc_sync before any subsequent
access.

When calling nc_sync, the netCDF dataset must be in data mode. A netCDF dataset
in define mode is synchronized to disk only when nc_enddef is called. A process that is
reading a netCDF dataset that another process is writing may call nc_sync to get updated
with the changes made to the data by the writing process (e.g., the number of records
written), without having to close and reopen the dataset.

Data is automatically synchronized to disk when a netCDF dataset is closed, or whenever
you leave define mode.

Usage

int nc_sync(int ncid);
ncid NetCDF ID, from a previous call to nc_open or nc_create.
Errors

nc_sync returns the value NC_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

e The netCDF dataset is in define mode.
e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_sync to synchronize the disk writes of a netCDF dataset named
foo.nc:

30 NetCDF C Interface Guide

#include <netcdf.h>

int status;
int ncid;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status != NC_NOERR) handle_error(status);

/* write data or change attributes */

status = nc_sync(ncid); /* synchronize to disk */
if (status != NC_NOERR) handle_error(status);

2.17 Back Out of Recent Definitions: nc_abort

You no longer need to call this function, since it is called automatically by nc_close in case
the dataset is in define mode and something goes wrong with committing the changes. The
function nc_abort just closes the netCDF dataset, if not in define mode. If the dataset is
being created and is still in define mode, the dataset is deleted. If define mode was entered
by a call to nc_redef, the netCDF dataset is restored to its state before definition mode was
entered and the dataset is closed.

Usage

int nc_abort(int ncid);
ncid NetCDF ID, from a previous call to nc_open or nc_create.
Errors

nc_abort returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e When called from define mode while creating a netCDF dataset, deletion of the dataset
failed.

e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_abort to back out of redefinitions of a dataset named foo.nc:
#include <netcdf.h>

int ncid, status, latid;

status = nc_open("foo.nc", NC_WRITE, &ncid);/* open for writing */
if (status != NC_NOERR) handle_error(status);

status = nc_redef (ncid); /* enter define mode */
if (status != NC_NOERR) handle_error(status);

Chapter 2: Datasets 31

status = nc_def_dim(ncid, "lat", 18L, &latid);

if (status != NC_NOERR) {
handle_error(status);
status = nc_abort(ncid); /* define failed, abort */
if (status !'= NC_NOERR) handle_error(status);

+

2.18 Set Fill Mode for Writes: nc_set_fill

This function is intended for advanced usage, to optimize writes under some circumstances
described below. The function nc_set_fill sets the fill mode for a netCDF dataset open
for writing and returns the current fill mode in a return parameter. The fill mode can
be specified as either NC_FILL or NC_NOFILL. The default behavior corresponding to
NC_FILL is that data is pre-filled with fill values, that is fill values are written when you
create non-record variables or when you write a value beyond data that has not yet been
written. This makes it possible to detect attempts to read data before it was written. For
more information on the use of fill values see Section 6.27 [Fill Values|, page 100. For
information about how to define your own fill values see section “Attribute Conventions”
in NetCDF Users’ Guide.

The behavior corresponding to NC_NOFILL overrides the default behavior of prefilling
data with fill values. This can be used to enhance performance, because it avoids the dupli-
cate writes that occur when the netCDF library writes fill values that are later overwritten
with data.

A value indicating which mode the netCDF dataset was already in is returned. You can
use this value to temporarily change the fill mode of an open netCDF dataset and then
restore it to the previous mode.

After you turn on NC_NOFILL mode for an open netCDF dataset, you must be certain
to write valid data in all the positions that will later be read. Note that nofill mode is only
a transient property of a netCDF dataset open for writing: if you close and reopen the
dataset, it will revert to the default behavior. You can also revert to the default behavior
by calling nc_set_fill again to explicitly set the fill mode to NC_FILL.

There are three situations where it is advantageous to set nofill mode:

1. Creating and initializing a netCDF dataset. In this case, you should set nofill mode
before calling nc_enddef and then write completely all non-record variables and the
initial records of all the record variables you want to initialize.

2. Extending an existing record-oriented netCDF dataset. Set nofill mode after opening
the dataset for writing, then append the additional records to the dataset completely,
leaving no intervening unwritten records.

3. Adding new variables that you are going to initialize to an existing netCDF dataset.
Set nofill mode before calling nc_enddef then write all the new variables completely.

If the net CDF dataset has an unlimited dimension and the last record was written while
in nofill mode, then the dataset may be shorter than if nofill mode was not set, but this
will be completely transparent if you access the data only through the netCDF interfaces.

The use of this feature may not be available (or even needed) in future releases. Pro-
grammers are cautioned against heavy reliance upon this feature.

32 NetCDF C Interface Guide

Usage

int nc_set_fill (int ncid, int fillmode, int *old_modep);
ncid NetCDF ID, from a previous call to nc_open or nc_create.
fillmode Desired fill mode for the dataset, either NC_NOFILL or NC_FILL.

old_modep
Pointer to location for returned current fill mode of the dataset before this call,
either NC_NOFILL or NC_FILL.

Errors

nc_set_fill returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The specified netCDF ID does not refer to an open netCDF dataset.
e The specified netCDF ID refers to a dataset open for read-only access.
e The fill mode argument is neither NC_NOFILL nor NC_FILL..

Example

Here is an example using nc_set_fill to set nofill mode for subsequent writes of a netCDF
dataset named foo.nc:

#include <netcdf.h>
int ncid, status, old_fill_mode;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status != NC_NOERR) handle_error(status);

/* write data with default prefilling behavior */

status = nc_set_fill(ncid, NC_NOFILL, &old_fill_mode); /* set nofill */
if (status != NC_NOERR) handle_error(status);

/* write data with no prefilling */

2.19 Set Default Creation Format: nc_set_default_format

This function is intended for advanced users.

Starting in version 3.6, netCDF introduced a new data format, the first change in the
underlying binary data format since the netCDF interface was released. The new format,
64-bit offset format, was introduced to greatly relax the limitations on creating very large
files.

Users are warned that creating files in the 64-bit offset format makes them unreadable
by the netCDF library prior to version 3.6.0. For reasons of compatibility, users should
continue to create files in netCDF classic format.

Chapter 2: Datasets 33

Users who do want to use 64-bit offset format files can create them directory from
nc_create, using the proper cmode flag. (see Section 2.5 [nc_create], page 13).

The function nc_set_default_format allows the user to change the format of the netCDF
file to be created by future calls to nc_create (or nc__create) without changing the cmode
flag.

This allows the user to convert a program to use 64-bit offset formation without changing
all calls the nc_create. See section “Large File Support” in The NetCDF' Users Guide.
Once the default format is set, all future created files will be in the desired format.

Two constants are provided in the netcdf.h file to be used with this function,
NC_FORMAT _64BIT and NC_FORMAT_CLASSIC.

If a non-NULL pointer is provided, it is assumed to point to an int, where the existing
default format will be written.

Using nc_create with a cmode including NC_64BIT_OFFSET overrides the default for-
mat, and creates a 64-bit offset file.

Usage
int nc_set_default_format(int format, int *old_formatp);
format Either NC_.FORMAT _CLASSIC (the default setting) or NC_.FORMAT_64BIT.

old_formatp
Either NULL (in which case it will be ignored), or a pointer to an int where
the existing default format (i.e. before being changed to the new format) will
be written. This allows you to get the existing default format while setting a
new default format.

Errors

nc_set_default_format returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

e Invalid format. The only wvalid formats are NC_FORMAT_CLASSIC and
NC_FORMAT_64BIT. Trying to set the default format to something else will result
in an invalid argument error. (NC_EINVAL)

Example

Here is an example using nc_set_default_format to create the same file in both formats with
the same nc_create call:

#include <netcdf.h>
int ncid, status, old_fill_mode;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status != NC_NOERR) handle_error(status);

/* write data with default prefilling behavior */

34

NetCDF C Interface Guide

status = nc_set_fill(ncid, NC_NOFILL, &old_fill_mode); /* set nofill */
if (status != NC_NOERR) handle_error(status);

/* write data with no prefilling */

Chapter 3: Groups 35

3 Groups

NetCDF-4 added support for hierarchical groups within netCDF datasets.

Groups are identified with a ncid, which identifies both the open file, and the group
within that file. When a file is opened with nc_open or nc_create, the ncid for the root
group of that file is provided. Using that as a starting point, users can add new groups, or
list and navigate existing groups.

All netCDF calls take a ncid wheih determines where the call will take it’s action. For
example, the nc_def_var function takes a ncid as it’s first parameter. It will create a variable
in whichever group it’s ncid refers to. Use the root ncid provided by nc_create or nc_open
ito create a variable in the root group. Or use nc_def_grp to create a group and use it’s
ncid to define a variable in the new group.

Variable are only visible in the group in which they are defined. The same applies to
attributes. “Global” attributes are defined in the root group. Group level attributes may
also be defined.

Dimensions are visible in their groups, and all child groups.

Group operations are only permitted on netCDF-4 files - that is, files created with the
HDF5 flag in nc_create. (see Section 2.5 [nc_create|, page 13).
3.1 Find a Group ID: nc_inq_ncid

Given an ncid and group name (NULL or "" gets root group), return ncid of the named
group.

Usage
int nc_ing_ncid(int ncid, char #*name, int *ncid);
ncid The group id for this operation.
name A char array that holds the name of the desired group.
ncid An int pointer that will recieve the group id, if the group is found.
Errors

NC_NOERR No error.
NC_EBADID
Bad group id.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

36 NetCDF C Interface Guide

Example
int root_ncid, child_ncid;

char file[] = "nc4_test.nc";

/* Open the file. */
if ((res = nc_open(file, NC_NOWRITE, &root_ncid)))
return res;

/* Get the ncid of an existing group. */
if ((res = nc_ing_ncid(root_ncid, "groupl", &child_ncid)))
return res;
3.2 Get a List of Groups in a Group: nc_inq_grps

Given a location id, return the number of groups it contains, and an array of their ncids.

Usage
int nc_ing_grps(int ncid, int *numgrps, int *ncids);
ncid The group id for this operation.
numgrps Pointer to an int which will get number of groups in this group. If NULL, it’s
ignored.
ncids Pointer to a already allocaed array of ints which will recieve the ids of all the

groups in this group. If NULL, it’s ignored. Call this function with NULL for
ncids parameter to find out how many groups there are.

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.
Example

int root_ncid, numgrps;
int *ncids;

Chapter 3: Groups 37

char filel[] = "nc4_test.nc";

/* Open the file. */
if ((res = nc_open(file, NC_NOWRITE, &root_ncid)))
return res;

/* Get a list of ncids for the root group. (That is, find out of
there are any groups already defined. */

if ((res = nc_inq_grps(root_ncid, &numgrps, NULL)))
return res;

ncids = malloc(sizeof (int) * numgrps);

if ((res = nc_inqg_grps(root_ncid, NULL, ncids)))
return res;

3.3 Find all the Variables in a Group: nc_inq_varids

Find all varids for a location.

Usage
int nc_ing_varids(int ncid, int *varids);
ncid The group id for this operation.

varids An already allocated array to store the list of varids. Ignored if NULL. Use
nc_ing-nvars to find out how many variables there are. (see Section 2.15 [nc_ing
Family], page 27).

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

int root_ncid, numvars;
int *varids;
char file[] = "nc4_test.nc";

38 NetCDF C Interface Guide

/* Open the file. */
if ((res = nc_open(file, NC_NOWRITE, &root_ncid)))
return res;

/* Get a list of varids for the root group. (That is, find out of
there are any groups already defined. */

if ((res = nc_inq_nvars(root_ncid, &numvars)))
return res;

varids = malloc(sizeof (int) * numvars);

if ((res = nc_inq_grps(root_ncid, NULL, varids)))
return res;

3.4 Find all Dimensions Visible in a Group: nc_inq_dimids

Find all dimids for a location. This finds all dimensions in a group, or any of it’s parents.

Usage
int nc_ing_dimids(int ncid, int *dimids);
ncid The group id for this operation.
dimids An already allocated array of ints when the dimids of the visible dimensions

will be stashed. Use nc_ing-ndims to find out how many dims are visible from
this group. (see Section 2.15 [nc_inq Family], page 27).

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

int root_ncid, numdims;
int *dimids;
char file[] = "nc4_test.nc";

Chapter 3: Groups 39

/* Open the file. */
if ((res = nc_open(file, NC_NOWRITE, &root_ncid)))
return res;

/* Get a list of dimids for the root group. (That is, find out of
there are any groups already defined. */

if ((res = nc_ing_ndims(root_ncid, &numdims)))
return res;

dimids = malloc(sizeof (int) * numdims);

if ((res = nc_ing_grps(root_ncid, NULL, dimids)))
return res;

3.5 Find the Length of a Group’s Name:
nc_inqg_grpname_len

Given ncid, find len of name. (Root group is named "", with length 0.)
Usage

int nc_ing_grpname_len(int ncid, size_t *lenp);
ncid The group id for this operation.
lenp Pointer to an int where the length will be placed.
Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open|, page 19).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open|, page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

3.6 Find a Group’s Name: nc_inq_grpname

Given ncid, find complete name of group. (Root group is named "", a full "path" for each
group is provided in the name, with groups seperated with a forward slash / as in Unix
directory names. For example "groupl/subgrpl/subsubgrpl")

40 NetCDF C Interface Guide

Usage
int nc_inqg_grpname(int ncid, char *name);
ncid The group id for this operation.
name Pointer to allocated space of correct length. The name of the group will be

copied there. To find the required length, call nc_inq_grpname_len (see Sec-
tion 3.5 [nc_ing_grpname_len|, page 39)..

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open|, page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

3.7 Find a Group’s Parent: nc_inq_grp_parent
Given ncid, find the ncid of the parent group.

When used with the root group, this function returns the NC_ENOGRP error (since the
root group has no parent.)

Usage

int nc_inq_grp_parent(int ncid, int *parent_ncid);
ncid The group id.

parent_ncid
Pointer to an int. The ncid of the group will be copied there.

Chapter 3: Groups 41

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENOGRP
No parent group found (i.e. this is the root group).

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

Example
if (nc_create(FILE_NAME, NC_NETCDF4, &ncid)) ERR;
if (nc_def_grp(ncid, HENRY_VII, &henry_vii_id)) ERR;

if (nc_inqg_grp_parent(henry_vii_id, &parent_ncid)) ERR;
if (parent_ncid !'= ncid) ERR;
if (nc_close(ncid)) ERR;

3.8 Find a Group’s ncid: nc_inq_grp_ncid

Given ncid, and the name of a group, find the ncid of that group.

Usage

int nc_inq_grp_ncid(int ncid, char *grp_name, int *grp_ncid) ;
ncid The group id.
grp_name The name of a group.

grp_ncid Pointer to an int. The ncid of the group will be copied there.

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

42 NetCDF C Interface Guide

NC_EINVAL
Group name too long.

NC_ENOGRP
No group of this name found.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

3.9 Create a New Group: nc_def_grp

Create a group. It’s location id is returned in the new_ncid pointer.

Usage
int nc_def_grp(int parent_ncid, char *name, int *new_ncid);
parent_ncid
The group id of the parent group.
name The name of the new group.

new_ncid A pointer to an int. The ncid of the new group will be placed there.

Errors

NC_NOERR No error.
NC_EBADID

Bad group id.
NC_ENAMEINUSE

That name is in use. Group names must be unique within a group.

NC_EMAXNAME
Name exceed max length NC_.MAX_NAME.

NC_EBADNAME
Name contains illegal characters.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

Chapter 3: Groups 43

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

NC_EPERM Attempt to write to a read-only file.

NC_ENOTINDEFINE
Not in define mode.

Example

int root_ncid, al_ncid;
char grpname[] = "assimilationl";

/* Get the ncid of the root group. */
if ((res = nc_inqg_ncid(root_ncid, NULL, &root_ncid)))
return res;

/* Create a group. */
if ((res = nc_def_grp(root_ncid, grpname, &al_ncid)))
return res;

44

NetCDF C Interface Guide

Chapter 4: Dimensions 45

4 Dimensions

4.1 Dimensions Introduction

Dimensions for a netCDF dataset are defined when it is created, while the netCDF dataset
is in define mode. Additional dimensions may be added later by reentering define mode.
A 1netCDF dimension has a name and a length. In a netCDF classic or 64-bit offset file,
at most one dimension can have the unlimited length, which means variables using this
dimension can grow along this dimension. In a netCDF-4 file multiple unlimited dimensions
are supported.

There is a suggested limit (100) to the number of dimensions that can be defined in a
single netCDF dataset. The limit is the value of the predefined macro NC_MAX_DIMS. The
purpose of the limit is to make writing generic applications simpler. They need only provide
an array of NC_MAX_DIMS dimensions to handle any netCDF dataset. The implementa-
tion of the netCDF library does not enforce this advisory maximum, so it is possible to use
more dimensions, if necessary, but netCDF utilities that assume the advisory maximums
may not be able to handle the resulting netCDF datasets.

Ordinarily, the name and length of a dimension are fixed when the dimension is first
defined. The name may be changed later, but the length of a dimension (other than the
unlimited dimension) cannot be changed without copying all the data to a new netCDF
dataset with a redefined dimension length.

Dimension lengths in the C interface are type size_t rather than type int to make it
possible to access all the data in a netCDF dataset on a platform that only supports a
16-bit int data type, for example MSDOS. If dimension lengths were type int instead, it
would not be possible to access data from variables with a dimension length greater than a
16-bit int can accommodate.

A netCDF dimension in an open netCDF dataset is referred to by a small integer called
a dimension ID. In the C interface, dimension IDs are 0, 1, 2, ..., in the order in which the
dimensions were defined.

Operations supported on dimensions are:
e Create a dimension, given its name and length.
e Get a dimension ID from its name.
e Get a dimension’s name and length from its ID.

e Rename a dimension.

4.2 Create a Dimension: nc_def_dim

The function nc_def_dim adds a new dimension to an open netCDF dataset in define mode.
It returns (as an argument) a dimension ID, given the netCDF ID, the dimension name, and
the dimension length. At most one unlimited length dimension, called the record dimension,
may be defined for each classic or 64-bit offset netCDF dataset. NetCDF-4 datasets may
have multiple unlimited dimensions.

46 NetCDF C Interface Guide

Usage

int nc_def_dim (int ncid, const char *name, size_t len, int *dimidp);
ncid NetCDF group ID, from a previous call to nc_open, nc_create, nc_def_grp, etc.
name Dimension name. Must begin with an alphabetic character, followed by zero or

more alphanumeric characters including the underscore (’_’). Case is significant.

len Length of dimension; that is, number of values for this dimension as an index
to variables that use it. This should be either a positive integer (of type size_t)
or the predefined constant NC_UNLIMITED.

dimidp Pointer to location for returned dimension ID.

Errors

nc_def_dim returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The netCDF dataset is not in definition mode.
e The specified dimension name is the name of another existing dimension.
e The specified length is not greater than zero.

e The specified length is unlimited, but there is already an unlimited length dimension
defined for this netCDF dataset.

e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_def_dim to create a dimension named lat of length 18 and a
unlimited dimension named rec in a new netCDF dataset named foo.nc:

#include <netcdf.h>
int status, ncid, latid, recid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status !'= NC_NOERR) handle_error(status);

status = nc_def_dim(ncid, "lat", 18L, &latid);
if (status !'= NC_NOERR) handle_error(status);
status = nc_def_dim(ncid, "rec", NC_UNLIMITED, &recid);
if (status !'= NC_NOERR) handle_error(status);

4.3 Get a Dimension ID from Its Name: nc_inq_dimid

The function nc_inq-dimid returns (as an argument) the ID of a netCDF dimension, given
the name of the dimension. If ndims is the number of dimensions defined for a netCDF
dataset, each dimension has an ID between 0 and ndims-1.

Chapter 4: Dimensions 47

Usage
When searching for a dimension, the specified group is searched, and then its parent group,
and then it’s grandparent group, etc., up to the root group.

int nc_inq_dimid (int ncid, const char *name, int *dimidp);
ncid NetCDF 1D, from a previous call to nc_open or nc_create.

name Dimension name, a character string beginning with a letter and followed by any

sequence of letters, digits, or underscore (’_") characters. Case is significant in

dimension names.

dimidp Pointer to location for the returned dimension ID.

Errors
nc_inqg-dimid returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

The name that was specified is not the name of a dimension in the netCDF dataset. The
specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_inq_dimid to determine the dimension ID of a dimension named

lat, assumed to have been defined previously in an existing netCDF dataset named foo.nc:
#include <netcdf.h>

int status, ncid, latid;

status = nc_open("foo.nc", NC_NOWRITE, &ncid); /* open for reading */
if (status != NC_NOERR) handle_error(status);

status = nc_ing_dimid(ncid, "lat", &latid);
if (status != NC_NOERR) handle_error(status);

4.4 Inquire about a Dimension: nc_inq_-dim Family

This family of functions returns information about a netCDF dimension. Information about
a dimension includes its name and its length. The length for the unlimited dimension, if
any, is the number of records written so far.

The functions in this family include nc_inq_dim, nc_inq_dimname, and nc_inq_dimlen.
The function nc_ing_dim returns all the information about a dimension; the other functions
each return just one item of information.

Usage

int nc_ing_dim (int ncid, int dimid, char* name, size_t* lengthp);
int nc_ing_dimname (int ncid, int dimid, char *name);
int nc_ing_dimlen (int ncid, int dimid, size_t *lengthp);

ncid NetCDF 1D, from a previous call to nc_open or nc_create.

48 NetCDF C Interface Guide

dimid Dimension ID, from a previous call to nc_ing_dimid or nc_def_dim.

name Returned dimension name. The caller must allocate space for the returned
name. The maximum possible length, in characters, of a dimension name is
given by the predefined constant NC_MAX_NAME. (This doesn’t include the
null terminator, so declare your array to be size NC_.MAX_NAME+1). The
returned character array will be null-terminated.

lengthp Pointer to location for returned length of dimension. For the unlimited dimen-
sion, this is the number of records written so far.

Errors

These functions return the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The dimension ID is invalid for the specified netCDF dataset.
e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_inqg_dim to determine the length of a dimension named lat, and
the name and current maximum length of the unlimited dimension for an existing netCDF
dataset named foo.nc:

#include <netcdf.h>

int status, ncid, latid, recid;
size_t latlength, recs;
char recname [NC_MAX_NAME+1];

status = nc_open("foo.nc", NC_NOWRITE, &ncid); /* open for reading */

if (status !'= NC_NOERR) handle_error(status);

status = nc_ing_unlimdim(ncid, &recid); /* get ID of unlimited dimension */
if (status != NC_NOERR) handle_error(status);

status = nc_ing_dimid(ncid, "lat", &latid); /* get ID for lat dimension */
if (status !'= NC_NOERR) handle_error(status);

status = nc_ing_dimlen(ncid, latid, &latlength); /* get lat length */

if (status != NC_NOERR) handle_error(status);

/* get unlimited dimension name and current length */

status = nc_inqg_dim(ncid, recid, recname, &recs);

if (status != NC_NOERR) handle_error(status);

4.5 Rename a Dimension: nc_rename_dim
The function nc_rename_dim renames an existing dimension in a netCDF dataset open for
writing. You cannot rename a dimension to have the same name as another dimension.

For netCDF classic and 64-bit offset files, if the new name is longer than the old name,
the netCDF dataset must be in define mode.

Chapter 4: Dimensions 49

For netCDF-4 files the dataset is switched to define more for the rename, regardless of
the name length.

Usage

int nc_rename_dim(int ncid, int dimid, const char* name);

ncid NetCDF ID, from a previous call to nc_open or nc_create.

dimid Dimension ID, from a previous call to nc_inq_dimid or nc_def_dim.
name New dimension name.

Errors

nc_rename_dim returns the value NC_NOERR if no errors occurred. Otherwise, the re-
turned status indicates an error. Possible causes of errors include:

e The new name is the name of another dimension.

e The dimension ID is invalid for the specified netCDF dataset.

e The specified netCDF ID does not refer to an open netCDF dataset.

e The new name is longer than the old name and the netCDF dataset is not in define
mode.

Example

Here is an example using nc_rename_dim to rename the dimension lat to latitude in an
existing netCDF dataset named foo.nc:

#include <netcdf.h>
int status, ncid, latid;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status != NC_NOERR) handle_error(status);

status = nc_redef(ncid); /* put in define mode to rename dimension */
if (status != NC_NOERR) handle_error(status);

status = nc_ing_dimid(ncid, "lat", &latid);

if (status != NC_NOERR) handle_error(status);

status = nc_rename_dim(ncid, latid, "latitude");

if (status !'= NC_NOERR) handle_error(status);

status = nc_enddef (ncid); /* leave define mode */

if (status != NC_NOERR) handle_error(status);

4.6 Find All Unlimited Dimension IDs: nc_inq_unlimdims
In netCDF-4 files, it’s possible to have multiple unlimited dimensions. This function returns
a list of the unlimited dimension ids visible in a group.

Dimensions are visible in a group if they have been defined in that group, or any ancestor
group.

50 NetCDF C Interface Guide

Usage

int nc_ing_unlimdims(int ncid, int *nunlimdimsp, int *unlimdimidsp);
ncid NetCDF group ID, from a previous call to nc_open, nc_create, nc_def_grp, etc.
nunlimdimsp

A pointer to an int which will get the number of visible unlimited dimensions.
Ignored if NULL.

unlimdimidsp
A pointer to an already allocated array of int which will get the ids of all
visible unlimited dimensions. Ignored if NULL. To allocate the correct length
for this array, call nc_inq_unlimdims with a NULL for this parameter and use
the nunlimdimsp parameter to get the number of visible unlimited dimensions.

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.
NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations

can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

Example
int root_ncid, num_unlimdims, unlimdims[NC_MAX_DIMS];
char filel[] = "nc4_test.nc";
int res;

/* Open the file. */
if ((res = nc_open(file, NC_NOWRITE, &root_ncid)))
return res;

/* Find out if there are any unlimited dimensions in the root
group. */

if ((res = nc_inq_unlimdims(root_ncid, &num_unlimdims, unlimdims)))
return res;

printf ("nc_ing_unlimdims reports %d unlimited dimensions\n", num_unlimdims);

Chapter 5: User Defined Data Types 51

5 User Defined Data Types

5.1 Compound Types Introduction
NetCDF-4 added support for compound types, which allow users to constuct a new type -
a combination of other types, like a C struct.

Compound types are not supported in classic or 64-bit offset format files.

To write data in a compound type, first use nc_def_compound to create the type, multiple
calls to nc_insert_compound to add to the compound type, and then write data with the
nc_put_var[lasm].

To read data written in a compound type, you must know it’s structure. Use the
nc_ing_compound functions to learn about the compound type.

5.2 Creating a Compound Type: nc_def_compound
Create a compound type. Provide an ncid (must be the root group), a name, and a total
size (in bytes) of one element of the completed compound type.

After calling this function, fill out the type with repeated calls to nc_insert_compound
(see Section 5.3 [nc_insert_compound], page 52).

Usage
int nc_def_compound(int ncid, size_t size, char #*name, nc_type *typeidp);
ncid The groupid where this compound type will be created.
size The size, in bytes, of the compound type.
name The name of the new compound type.

typeidp A pointer to an nc_type. The typeid of the new type will be placed there.

Errors

NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENAMEINUSE
That name is in use. Compound type names must be unique in the data file.

NC_EMAXNAME
Name exceed max length NC_.MAX_NAME.

NC_EBADNAME
Name contains illegal characters.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

52 NetCDF C Interface Guide

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

NC_EPERM Attempt to write to a read-only file.

NC_ENOTINDEFINE
Not in define mode.

Example

struct si
{
int il;
int i2;
};
struct sl data[DIM_LEN], data_in[DIM_LEN];

/* Create a file with a compound type. Write a little data. */
if (nc_create(FILE_NAME, NC_NETCDF4, &ncid)) ERR;
if (nc_def_compound(ncid, sizeof (struct s1), SVC_REC, &typeid)) ERR;
if (nc_insert_compound(ncid, typeid, BATTLES_WITH_KLINGONS,
HOFFSET (struct si, il1), NC_INT)) ERR;
if (nc_insert_compound(ncid, typeid, DATES_WITH_ALIENS,
HOFFSET (struct si1, i2), NC_INT)) ERR;
if (nc_def_dim(ncid, STARDATE, DIM_LEN, &dimid)) ERR;
if (nc_def_var(ncid, SERVICE_RECORD, typeid, 1, dimids, &varid)) ERR;
if (nc_put_var(ncid, varid, data)) ERR;
if (nc_close(ncid)) ERR;

5.3 Inserting a Field into a Compound Type:
nc_insert_compound

Insert a named field into a compound type.

Usage

int nc_insert_compound(nc_type typeid, char *name, size_t offset,
nc_type field_typeid);

typeid The typeid for this compound type, as returned by nc_def_compound, or
nc_inqg-var.

name The name of the new field.
offset Offset in byte from the beginning of the compound type for this field.

field_typeid
The type of the field to be inserted.

Chapter 5: User Defined Data Types 53

Errors
NC_NOERR No error.

NC_EBADID
Bad group id.

NC_ENAMEINUSE
That name is in use. Field names must be unique within a compound type.

NC_EMAXNAME
Name exceed max length NC_.MAX_NAME.

NC_EBADNAME
Name contains illegal characters.

NC_ENQOTNC4
Attempting a netCDF-4 operation on a netCDF-3 file. NetCDF-4 operations
can only be performed on files defined with a create mode which includes flag
HDF5. (see Section 2.8 [nc_open], page 19).

NC_ESTRICTNC3
This file was created with the strict netcdf-3 flag, therefore netcdf-4 operations
are not allowed. (see Section 2.8 [nc_open], page 19).

NC_EHDFERR
An error was reported by the HDF5 layer.

NC_ENOTINDEFINE
Not in define mode.

Example

5.4 Learn About a Compound Type: nc_inq_compound

Get the number of fields, len, and name of a compound type.

Usage

int nc_ing_compound(nc_type typeid, char *name, size_t *lenp,
int *nfieldsp);

typeid The typeid for this compound type, as returned by nc_def_compound, or
nc_ing_var.

name Pointer to an already allocated char array which will get the name, as a null
terminated string. It will have a maximum length of NC_.MAX_NAME+1.

lenp A pointer to a size_t. The number of fields in the compound type will be placed
here.

54 NetCDF C Interface Guide

Errors

NC_NOERR No error.

NC_EBADTYPEID
Bad type id.

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

5.5 Find the Name of a Field in a Compound Type:
nc_inq_compound_fieldname

Given the typeid and the fieldid, get the name.

Usage

int nc_inq_compound_fieldname(nc_type typeid, int fieldid, char *name);

typeid The typeid for this compound type, as returned by nc_def_compound, or
nc_inqg_var.

fieldid The id of the field in the compound type. Fields are numbered starting with 0
for the first inserted field.

name Pointer to an already allocated char array which will get the name, as a null
terminated string. It will have a maximum length of NC_.MAX_NAME+1.

Errors

NC_NOERR No error.

NC_EBADTYPEID
Bad type id.

NC_EBADFIELDID
Bad field id.

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

5.6 Get the FieldID of a Compound Type Field:
nc_inq_compound_fieldindex

Given the typeid and the name, get the fieldid.

Chapter 5: User Defined Data Types 55

Usage
int nc_inq_compound_fieldindex(nc_type typeid, char *name, int *fieldidp);

typeid The typeid for this compound type, as returned by nc_def_compound, or
nc_ing_var.

name The name of the field.

fieldidp A pointer to an int which will get the field id of the named field.

Errors

NC_NOERR No error.

NC_EBADTYPEID
Bad type id.

NC_EUNKNAME
Can’t find field of this name.

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

5.7 Get the Offset of a Field: nc_inq_compound_fieldoffset
Given the typeid and fieldid, get the offset.

Usage

int nc_inqg_compound_fieldoffset(nc_type typeid, int fieldid,
size_t *offsetp);

typeid The typeid for this compound type, as returned by nc_def_compound, or
nc_inqg_var.

fieldid The id of the field in the compound type. Fields are numbered starting with 0
for the first inserted field.

offsetp A pointer to a size_t. The offset of the field will be placed there.

Errors

NC_NOERR No error.

NC_EBADTYPEID
Bad typeid.

NC_EBADFIELDID
Bad fieldid.

NC_EHDFERR
An error was reported by the HDF5 layer.

56 NetCDF C Interface Guide

Example

5.8 Find the Type of a Field: nc_inq_compound_fieldtype
Given the typeid and the fieldid, get the type of that field.

Usage

nc_ing_compound_fieldtype(nc_type typeid, int fieldid,
nc_type *field_typeidp);

typeid The typeid for this compound type, as returned by nc_def_compound, or
nc_ing_var.

fieldid The id of the field in the compound type. Fields are numbered starting with 0
for the first inserted field.

field_typeidp
Pointer to a nc_typ which will get the typeid of the field.

Errors

NC_NOERR No error.

NC_EBADTYPEID
Bad typeid.

NC_EBADFIELDID
Bad fieldid.

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

5.9 Variable Length Array Introduction

NetCDF-4 added support for a variable length array type. This is not supported in classic or
64-bit offset files, or in netCDF-4 files which were created with the NC_CLASSIC_MODEL
flag.

A variable length array is represented in C as a structure from HDF5, the nc_vlen_t
structure. It contains a len member, which contains the length of that array, and a pointer
to the array.

So an array of VLEN in C is an array of nc_vlen_t structures.
VLEN arrays are handled differently with respect to allocation of memory. Generally,

when reading data, it is up to the user to malloc (and subsequently free) the memory need
to hold the data. It is up to the user to ensure that enough memory is allocated.

With VLENSs, this is impossible. The user cannot know the size of an array of VLEN until
after reading the array. Therefore when reading VLEN arrays, the netCDF will allocate
the memory for the data within each VLEN.

Chapter 5: User Defined Data Types 57

It is up to the user, however, to eventually free this memory. This is not just a matter
of one call to free, with the pointer to the array of VLENs; each VLEN contains a pointer
which must be freed.

5.10 Define a Variable Length Array (VLEN): nc_def_vlen

Use this function to define a variable length array type.

Usage

nc_def_vlen(int ncid, char *name, nc_type base_typeid, nc_type *xtypep);
ncid The ncid of the file to create the VLEN type in.
name A name for the VLEN type.

base_typeid
The typeid of the base type of the VLEN. For example, for a VLEN of shorts,
the base type is NC_SHORT. This can be a user defined type.

xXtypep A pointer to an nc_type variable. The typeif of the new VLEN type will be set
here.

Errors

NC_NOERR No error.

NC_EMAXNAME
NC_MAX_NAME exceeded.

NC_ENAMEINUSE
Name is already in use.

NC_EBADNAME
Attribute or variable name contains illegal characters.

NC_EBADID
ncid invalid.

NC_EBADGRPID
Group ID part of ncid was invalid.

NC_EINVAL
Size is invalid.

NC_ENOMEM
Out of memory.

Example
#define DIM_LEN 3
#define ATT_NAME "att_name"

nc_vlen_t data[DIM_LEN];
int *phoney;

58 NetCDF C Interface Guide

/* Create phoney data. */
for (i=0; i<DIM_LEN; i++)
{
if (!(phoney = malloc(sizeof (int) * i+1)))
return NC_ENOMEM;
for (j=0; j<i+l; j++)
phoney[j] = -99;
datal[i] .p = phoney;
datal[i] .len = i+1;

/* Define a VLEN of NC_INT, and write an attribute of that

type. */
if (nc_def_vlen(ncid, "namel", NC_INT, &typeid)) ERR;
if (nc_put_att(ncid, NC_GLOBAL, ATT_NAME, typeid, DIM_LEN, data)) ERR;

5.11 Learning about a Variable Length Array (VLEN)
Type: nc_ing_vlen

Use this type to learn about a vlen.

Usage

nc_ing_vlen(int ncid, nc_type xtype, char *name, size_t *datum_sizep,
nc_type *base_nc_typep);

ncid The ncid of the file that contains the VLEN type.
xtype The type of the VLEN to inquire about.
name A pointer for storage for the types name. The name will be NC_.MAX_NAME

characters or less.

datum_sizep
A pointer to a size_t, this will get the size of one element of this vlen.

base_nc_typep
A pointer to an nc_type, this will get the type of the VLEN base type. (In
other words, what type is this a VLEN of?)

Errors

NC_NOERR No error.

NC_EBADTYPE
Can’t find the typeid.

NC_EBADID
ncid invalid.

NC_EBADGRPID
Group ID part of ncid was invalid.

Chapter 5: User Defined Data Types 59

Example
if
if
if
if
if
if
if
if
if

(nc_create(FILE_NAME, NC_NETCDF4, &ncid)) ERR;
(nc_def_vlen(ncid, "namel", NC_INT, &typeid)) ERR;
(nc_inqg_vlen(ncid, typeid, name_in, &size_in, &base_nc_type_in)) ERR;

(base_nc_type_in != NC_INT || (size_in != sizeof(int) && strcmp(name_in, VLEN
(nc_ing_user_type(ncid, typeid, name_in, &size_in, &base_nc_type_in, NULL, &c
(base_nc_type_in != NC_INT || (size_in != sizeof(int) && strcmp(name_in, VLEN

(nc_ing_compound(ncid, typeid, name_in, &size_in, NULL) != NC_EBADTYPE) ERR;
(nc_put_att(ncid, NC_GLOBAL, ATT_NAME, typeid, DIM_LEN, data)) ERR;
(nc_close(ncid)) ERR;

5.12 Opaque Type Introduction

NetCDF-4 added support to the opaque type. This is not supported in classic or 64-bit

offset files.

/* */ EXTERNL int nc_def_opaque(int ncid, char *name, size_t size, nc_type *typeidp);

5.13 Creating Opaque Types: nc_def_opaque

Create an opaque type. Provide a size and a name.

Usage

typeid The

typeid for this compound type, as returned by nc_def_compound, or

nc_ing_var.

Errors

NC_NOERR No error.

NC_EBADTYPEID

Bad typeid.

NC_EBADFIELDID

Bad fieldid.

NC_EHDFERR

An error was reported by the HDF5 layer.

Example

/* Get the number of fields, len, and name of a compound type. */ EXTERNL int
nc_inq-opaque(nc_type typeid, char *name, size_t *sizep);

5.14 Learn

About an Opaque Type: nc_inq_opaque

Given a typeid, get the

60 NetCDF C Interface Guide

Usage

typeid The typeid for this compound type, as returned by nc_def_compound, or
nc_ing_var.

Errors

NC_NOERR No error.

NC_EBADTYPEID
Bad typeid.

NC_EBADFIELDID
Bad fieldid.

NC_EHDFERR
An error was reported by the HDF5 layer.

Example

5.15 Enum Type Introduction

NetCDF-4 added support for the enum type. This is not supported in classic or 64-bit offset
files.

Chapter 6: Variables 61

6 Variables

6.1 Introduction

Variables for a netCDF dataset are defined when the dataset is created, while the netCDF
dataset is in define mode. Other variables may be added later by reentering define mode.
A netCDF variable has a name, a type, and a shape, which are specified when it is defined.
A variable may also have values, which are established later in data mode.

Ordinarily, the name, type, and shape are fixed when the variable is first defined. The
name may be changed, but the type and shape of a variable cannot be changed. However,
a variable defined in terms of the unlimited dimension can grow without bound in that
dimension.

A netCDF variable in an open netCDF dataset is referred to by a small integer called a
variable ID.

Variable IDs reflect the order in which variables were defined within a netCDF dataset.
Variable IDs are 0, 1, 2,..., in the order in which the variables were defined. A function is
available for getting the variable ID from the variable name and vice-versa.

Attributes (see Chapter 7 [Attributes|, page 105) may be associated with a variable to
specify such properties as units.

Operations supported on variables are:
e Create a variable, given its name, data type, and shape.
e Get a variable ID from its name.
e Get a variable’s name, data type, shape, and number of attributes from its ID.
e Put a data value into a variable, given variable ID, indices, and value.

e Put an array of values into a variable, given variable ID, corner indices, edge lengths,
and a block of values.

e Put a subsampled or mapped array-section of values into a variable, given variable 1D,
corner indices, edge lengths, stride vector, index mapping vector, and a block of values.

e Get a data value from a variable, given variable ID and indices.

e Get an array of values from a variable, given variable ID, corner indices, and edge
lengths.

e Get a subsampled or mapped array-section of values from a variable, given variable ID,
corner indices, edge lengths, stride vector, and index mapping vector.

e Rename a variable.

6.2 Language Types Corresponding to netCDF external
data types

NetCDF supported six atmoic data types through version 3.6.0 (char, byte, short, int, float,
and double). Starting with version 4.0, many new atomic and user defined data types are
supported (unsigned int types, strings, compound types, variable length arrays, enums,
opaque).

The additional data types are only supported in netCDF-4/HDF5 files. To create
netCDF-4/HDFS5 files, use the HDF5 flag in nc_create. (see Section 2.5 [nc_create], page 13).

62 NetCDF C Interface Guide

6.3 NetCDF-3 Classic and 64-Bit Offset Data Types

NetCDEF-3 classic and 64-bit offset files support 6 atomic data types, and none of the user
defined datatype introduced in NetCDF-4.

The following table gives the netCDF-3 external data types and the corresponding type
constants for defining variables in the C interface:

Type C #define Bits
byte NC_BYTE 8
char NC_CHAR 8
short NC_SHORT 16
int NC_INT 32
float NC_FLOAT 32
double NC_DOUBLE 64

The first column gives the netCDF external data type, which is the same as the CDL data
type. The next column gives the corresponding C preprocessor macro for use in netCDF
functions (the preprocessor macros are defined in the netCDF C header-file netcdf.h). The
last column gives the number of bits used in the external representation of values of the
corresponding type.

6.4 NetCDF-4 Atomic Types

NetCDF-4 files support all of the atomic data types from netCDF-3, plus additional un-
signed integer types, 64-bit integer types, and a string type.

Type C #define Bits
byte NC_BYTE 8
unsigned byte NC_UBYTE" 8
char NC_CHAR 8
short NC_SHORT 16
unsigned short NC_USHORT" 16
int NC_INT 32
unsigned int NC_UINT" 32

unsigned long long NC_UINT64"~ 64

Chapter 6: Variables 63

long long NC_INT64"~ 64

float NC_FLOAT 32

double NC_DOUBLE 64

char ** NC_STRING" string
length + 1

~This type was introduced in netCDF-4, and is not supported in netCDF classic or 64-bit
offset format files, or in netCDF-4 files if they are created with the NC_CLASSIC_MODEL
flags.

6.5 Create a Variable: nc_def_var

The function nc_def_var adds a new variable to an open netCDF dataset in define mode.
It returns (as an argument) a variable ID, given the netCDF ID, the variable name, the
variable type, the number of dimensions, and a list of the dimension IDs.

Usage

int nc_def_var (int ncid, const char *name, nc_type xtype,
int ndims, const int dimids[], int *varidp);

ncid NetCDF ID, from a previous call to nc_open or nc_create.

name Variable name. Must begin with an alphabetic character, followed by zero or
more alphanumeric characters including the underscore (’."). Case is significant.

xtype One of the set of predefined netCDF external data types. The type of this pa-
rameter, nc_type, is defined in the netCDF header file. The valid netCDF exter-
nal data types are NC_BYTE, NC_.CHAR, NC_SHORT, NC_INT, NC_FLOAT,
and NC_DOUBLE.

ndims Number of dimensions for the variable. For example, 2 specifies a matrix, 1
specifies a vector, and 0 means the variable is a scalar with no dimensions. Must
not be negative or greater than the predefined constant NC_MAX_VAR_DIMS.

dimids Vector of ndims dimension IDs corresponding to the variable dimensions. If the
ID of the unlimited dimension is included, it must be first. This argument is
ignored if ndims is 0.

varidp Pointer to location for the returned variable ID.

Errors
nc_def_var returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The netCDF dataset is not in define mode.

e The specified variable name is the name of another existing variable.

e The specified type is not a valid netCDF type.

64 NetCDF C Interface Guide

e The specified number of dimensions is negative or more than the constant
NC_MAX_VAR_DIMS, the maximum number of dimensions permitted for a netCDF
variable.

e One or more of the dimension IDs in the list of dimensions is not a valid dimension ID
for the netCDF dataset.

e The number of variables would exceed the constant NC_MAX_VARS, the maximum
number of variables permitted in a netCDF dataset.

e The specified netCDF ID does not refer to an open netCDF dataset.
NC_NOERR No error.
NC_BADID Bad ncid.

NC_ENOTINDEFINE
Not in define mode. This is returned for netCDF classic or 64-bit offset files, or

for netCDF-4 files, when they were been created with NC_STRICT_NC3 flag.
(see Section 2.5 [nc_create], page 13).

NC_ESTRICTNC3
Trying to create a var some place other than the root group in a netCDF file
with NC_STRICT_NC3 turned on.

NC_MAX_VARS
Max number of variables exceeded in a classic or 64-bit offset file, or an netCDF-
4 file with NC_STRICT_NC3 on.

NC_EBADTYPE
Bad type.

NC_EINVAL
Number of dimensions to large.

NC_ENAMEINUSE
Name already in use. In netCDF-4 names need to be unique within a group,
but the same name can be used in different groups.

NC_EPERM Attempt to create object in read-only file.

Example

Here is an example using nc_def_var to create a variable named rh of type double with three
dimensions, time, lat, and lon in a new netCDF dataset named foo.nc:

#include <netcdf.h>

int status; /* error status */

int ncid; /* netCDF ID */

int lat_dim, lon_dim, time_dim; /* dimension IDs */
int rh_id; /* variable ID %/
int rh_dimids[3]; /* variable shape */

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);

Chapter 6: Variables 65

if (status !'= NC_NOERR) handle_error(status);

/* define dimensions */
status = nc_def_dim(ncid, "lat", 5L, &lat_dim);
if (status != NC_NOERR) handle_error(status);
status = nc_def_dim(ncid, "lon", 10L, &lon_dim);
if (status != NC_NOERR) handle_error(status);
status = nc_def_dim(ncid, "time", NC_UNLIMITED, &time_dim);
if (status !'= NC_NOERR) handle_error(status);

/* define variable */

rh_dimids[0] = time_dim;
rh_dimids[1] = lat_dim;
rh_dimids[2] = lon_dim;

status = nc_def_var (ncid, "rh", NC_DOUBLE, 3, rh_dimids, &rh_id);
if (status != NC_NOERR) handle_error(status);

6.6 Define Chunking Parameters for a Variable: nc_def_var_
chunking

The function nc_def_var_chunking sets the chunking parameters for a variable in a netCDF-4
file.

This function must be called after the variable is defined, but before nc_enddef is called.

Usage

nc_def_var_chunking(int ncid, int varid, int *chunkalgp,
int *chunksizesp, int *extend_incrementsp)

ncid NetCDF 1D, from a previous call to nc_open or nc_create.

varid Variable ID.

chunkalg Chunking algorithm to use. Default is NC_CHUNK_SEQ. See netcdf.h for more
information.

*chunksizes

A pointer to an array list of chunk sizes. The array must have the one chunksize
for each dimension in the variable.

*extend_increments
A pointer to an array list of extend increments for unlimited dimensions. The
array must have the one element for each dimension in the variable; values for
dimensions which are not unlimited are ignored. When the variable is extended
along the unlimited dimension(s) it is done so in these increments.

Errors

nc_def_var_chunking returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error.

Possible return codes include:

66 NetCDF C Interface Guide

NC_NOERR No error.
NC_BADID Bad ncid.

NC_ENOTNC4
Not a netCDF-4 file.

NC_ENOTVAR
Can’t find this variable.

NC_ELATEDEF
This variable has already been the subject of a nc_enddef call. In netCDF-4
files nc_enddef will be called automatically for any data read or write. Once
enddef has been called, it is impossible to set the chunking for a variable.

NC_ENOTINDEFINE
Not in define mode. This is returned for netCDF classic or 64-bit offset files, or

for netCDF-4 files, when they were been created with NC_STRICT_NC3 flag.
(see Section 2.5 [nc_create], page 13).

NC_ESTRICTNC3
Trying to create a var some place other than the root group in a netCDF file
with NC_STRICT_NC3 turned on.

NC_EPERM Attempt to create object in read-only file.

Example

6.7 Learn About Chunking Parameters for a Variable: nc_
ing_var_chunking

The function nc_inq_var_chunking returns the chunking settings for a variable in a netCDF-
4 file.
Usage

nc_ing_var_chunking(int ncid, int varid, int *chunkalgp,
int *chunksizesp, int *extend_incrementsp);

ncid NetCDF 1D, from a previous call to nc_open or nc_create.
varid Variable 1D.
*chunkalgp

Chunking algorithm in use. See netcdf.h for more information.

*chunksizesp
A pointer to an array list of chunk sizes. The array must have the one chunksize
for each dimension in the variable.

*extend_incrementsp
A pointer to an array list of extend increments for unlimited dimensions. The
array will have the one element for each dimension in the variable; values for
dimensions which are not unlimited are ignored. When the variable is extended
along the unlimited dimension(s) it is done so in these increments.

Chapter 6: Variables 67

Errors

nc_inq_var_chunking returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error.

Possible return codes include:
NC_NOERR No error.
NC_BADID Bad ncid.

NC_ENOTNC4
Not a netCDF-4 file.

NC_ENOTVAR
Can’t find this variable.

Example

6.8 Define Compression Parameters for a Variable: nc_def_
var_deflate

The function nc_def_var_deflate sets the deflate parameters for a variable in a netCDF-4
file.

This function must be called after the variable is defined, but before nc_enddef is called.

Usage

nc_def_var_deflate(int ncid, int varid, int shuffle, int deflate,
int deflate_level);

ncid NetCDF ID, from a previous call to nc_open or nc_create.
varid Variable 1D.
shuffle If non-zero, turn on the shuffle filter.

deflate If non-zero, turn on the deflate filter at the level specified by the deflate_level
parameter.

deflate_level
If the deflate parameter is non-zero, set the deflate level to this value. Must be
between 0 and 9.

Errors

nc_def_var_deflate returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error.

Possible return codes include:
NC_NOERR No error.
NC_BADID Bad ncid.

NC_ENOTNC4
Not a netCDF-4 file.

68 NetCDF C Interface Guide

NC_ENOTVAR
Can’t find this variable.

NC_ELATEDEF
This variable has already been the subject of a nc_enddef call. In netCDF-4
files nc_enddef will be called automatically for any data read or write. Once
enddef has been called, it is impossible to set the deflate for a variable.

NC_ENOTINDEFINE
Not in define mode. This is returned for netCDF classic or 64-bit offset files, or
for netCDF-4 files, when they were been created with NC_STRICT_NCS3 flag.
(see Section 2.5 [nc_create], page 13).

NC_EPERM Attempt to create object in read-only file.

NC_EINVAL
Invalid deflate_level. The deflate level must be between 0 and 9, inclusive.

Example

6.9 Learn About Deflate Parameters for a Variable: nc_inq_
var_deflate

The function nc_inq_var_deflate returns the deflate settings for a variable in a netCDF-4
file.

Usage

nc_ing_var_deflate(int ncid, int varid, int *shufflep,
int *deflatep, int *deflate_levelp);

ncid NetCDF 1D, from a previous call to nc_open or nc_create.
varid Variable 1D.
*shufflep

If this pointer is non-NULL, the nc_inq_var_deflate function will write a 1 if the
shuffle filter is turned on for this variable, and a 0 otherwise.

*deflatep
If this pointer is non-NULL, the nc_inq_var_deflate function will write a 1 if the
deflate filter is turned on for this variable, and a 0 otherwise.

*deflate_levelp
If this pointer is non-NULL, and the deflate filter is in use for this variable, the
nc_ing_var_deflate function will write the deflate_level here.

Errors

nc_ing_var_deflate returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error.

Possible return codes include:

Chapter 6: Variables 69

NC_NOERR No error.
NC_BADID Bad ncid.

NC_ENOTNC4
Not a netCDF-4 file.

NC_ENOTVAR
Can’t find this variable.

Example

6.10 Define Fletcher32 Parameters for a Variable: nc_def_
var_fletcher32

The function nc_def_var_fletcher32 sets the fletcher32 parameters for a variable in a netCDF-
4 file.

This function must be called after the variable is defined, but before nc_enddef is called.

Usage

nc_def_var_fletcher32(int ncid, int varid, int fletcher32);
ncid NetCDF ID, from a previous call to nc_open or nc_create.
varid Variable 1D.
fletcher32

If this is non-zero, fletcher32 checksums will be turned on for this variable.

Errors
nc_def_var_fletcher32 returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error.

Possible return codes include:
NC_NOERR No error.
NC_BADID Bad ncid.

NC_ENOTNC4
Not a netCDF-4 file.

NC_ENOTVAR
Can’t find this variable.

NC_ELATEDEF
This variable has already been the subject of a nc_enddef call. In netCDF-4
files nc_enddef will be called automatically for any data read or write. Once
enddef has been called, it is impossible to set the fletcher32 for a variable.

NC_ENOTINDEFINE
Not in define mode. This is returned for netCDF classic or 64-bit offset files, or
for netCDF-4 files, when they were been created with NC_STRICT_NC3 flag.
(see Section 2.5 [nc_create], page 13).

70 NetCDF C Interface Guide

NC_EPERM Attempt to create object in read-only file.

Example

6.11 Learn About Fletcher32 Parameters for a Variable: nc_
inqg_var_fletcher32

The function nc_inq_var_fletcher32 returns the fletcher32 settings for a variable in a net CDF-
4 file.

Usage
nc_inq_var_fletcher32(int ncid, int varid, int *fletcher32p);
ncid NetCDF ID, from a previous call to nc_open or nc_create.
varid Variable 1D.
*fletcher32p

If not-NULL, the nc_inq_var_fletcher32 function will set the int pointed to this
to 1 if the fletcher32 filter is turned on for this variable, and 0 if it is not.

Errors

nc_ing_var_fletcher32 returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error.

Possible return codes include:
NC_NOERR No error.
NC_BADID Bad ncid.

NC_ENOTNC4
Not a netCDF-4 file.

NC_ENOTVAR
Can’t find this variable.

Example

6.12 Define Endianness of a Variable: nc_def_var_endian
The function nc_def_var_endian sets the endianness for a variable in a netCDF-4 file.
This function must be called after the variable is defined, but before nc_enddef is called.

By default, netCDF-4 variables are in native endianness. That is, they are big-endian
on a big-endian machine, and little-endian on a little endian machine.

In some cases a user might wish to change from native endianness to either big or little-
endianness. This function allows them to do that.

Chapter 6: Variables 71

Usage

nc_def_var_endian(int ncid, int varid, int endian);
ncid NetCDF 1D, from a previous call to nc_open or nc_create.
varid Variable 1D.

endian Set to NC_ENDIAN_NATIVE for native endianness. (This is the default).
Set to NC_LENDIAN_LITTLE for little endian, or NC_ENDIAN_BIG for big
endian.

Errors

nc_def_var_endian returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error.

Possible return codes include:
NC_NOERR No error.
NC_BADID Bad ncid.

NC_ENOTNC4
Not a netCDF-4 file.

NC_ENOTVAR
Can’t find this variable.

NC_ELATEDEF
This variable has already been the subject of a nc_enddef call. In netCDF-4
files nc_enddef will be called automatically for any data read or write. Once
enddef has been called, it is impossible to set the endianness of a variable.

NC_ENOTINDEFINE
Not in define mode. This is returned for netCDF classic or 64-bit offset files, or
for netCDF-4 files, when they were been created with NC_STRICT_NCS3 flag,

and the file is not in define mode. (see Section 2.5 [nc_create], page 13).

NC_EPERM Attempt to create object in read-only file.
Example

6.13 Learn About Endian Parameters for a Variable: nc_
ing_var_endian

The function nc_inq_var_endian returns the endianness settings for a variable in a netCDF-4
file.

Usage
nc_ing_var_endian(int ncid, int varid, int *endianp);

ncid NetCDF 1D, from a previous call to nc_open or nc_create.

varid Variable ID.

72

*endianp

Errors

NetCDF C Interface Guide

If not-NULL, the nc_ing_var_endian function will set the int pointed to
this to NC_ENDIAN_LITTLE if this variable is stored in little-endian
format, NC_ENDIAN_BIG if it is stored in big-endian format, and
NC_ENDIAN_NATIVE if the endianness is not set, and the variable is not
created yet.

nc_ing_var_endian returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error.

Possible return codes include:

NC_NOERR
NC_BADID
NC_ENOTNC4

No error.

Bad ncid.

Not a netCDF-4 file.

NC_ENOTVAR

Can’t find this variable.

Example

6.14 Get a Variable ID from Its Name: nc_inq_varid

The function nc_ing_varid returns the ID of a netCDF variable, given its name.

Usage

int nc_inq_varid (int ncid, const char *name, int *varidp);

ncid
name

varidp

Errors

NetCDF ID, from a previous call to nc_open or nc_create.
Variable name for which ID is desired.

Pointer to location for returned variable ID.

nc_ing_varid returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The specified variable name is not a valid name for a variable in the specified netCDF

dataset

e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_inq_varid to find out the ID of a variable named rh in an
existing netCDF dataset named foo.nc:

Chapter 6: Variables 73

#include <netcdf.h>
int status, ncid, rh_id;

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status !'= NC_NOERR) handle_error(status);

6.15 Get Information about a Variable from Its ID:
nc_inqg_var

family

A family of functions that returns information about a netCDF variable, given its ID.
Information about a variable includes its name, type, number of dimensions, a list of di-
mension IDs describing the shape of the variable, and the number of variable attributes
that have been assigned to the variable.

The function nc_ing_var returns all the information about a netCDF variable, given its
ID. The other functions each return just one item of information about a variable.

These other functions include nc_inq_varname, nc_ing_vartype, nc_inq_varndims,
nc_inqg_vardimid, and nc_ing_varnatts.

Usage

int nc_inqg_var (int ncid, int varid, char *name, nc_type *xtypep,
int *ndimsp, int dimids[], int *nattsp);

int nc_inq_varname (int ncid, int varid, char *name);

int nc_ing_vartype (int ncid, int varid, nc_type *xtypep);

int nc_inq_varndims (int ncid, int varid, int #*ndimsp);

int nc_ing_vardimid (int ncid, int varid, int dimids[]);

int nc_ing_varnatts (int ncid, int varid, int *nattsp);

ncid NetCDF ID, from a previous call to nc_open or nc_create.
varid Variable ID.
name Returned variable name. The caller must allocate space for the returned name.

The maximum possible length, in characters, of a variable name is given by
the predefined constant NC_.MAX_NAME. (This doesn’t include the null ter-
minator, so declare your array to be size NC_MAX_NAME+1). The returned
character array will be null-terminated.

xtypep Pointer to location for returned variable type, one of the set of predefined
netCDF external data types. The type of this parameter, nc_type, is defined in
the netCDF header file. The valid netCDF external data types are NC_BYTE,
NC_CHAR, NC_SHORT, NC_INT, NC_FLOAT, and NC_.DOUBLE.

ndimsp Pointer to location for returned number of dimensions the variable was defined
as using. For example, 2 indicates a matrix, 1 indicates a vector, and 0 means
the variable is a scalar with no dimensions.

74 NetCDF C Interface Guide

dimids Returned vector of *ndimsp dimension IDs corresponding to the variable dimen-
sions. The caller must allocate enough space for a vector of at least *ndimsp
integers to be returned. The maximum possible number of dimensions for a
variable is given by the predefined constant NC_MAX_VAR_DIMS.

nattsp Pointer to location for returned number of variable attributes assigned to this
variable.

These functions return the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

The variable ID is invalid for the specified netCDF dataset. The specified netCDF 1D
does not refer to an open netCDF dataset.

Example

Here is an example using nc_ing_var to find out about a variable named rh in an existing
netCDF dataset named foo.nc:

#include <netcdf.h>

int status /* error status */

int ncid; /* netCDF ID x/

int rh_id; /* variable ID */

nc_type rh_type; /* variable type */

int rh_ndims; /* number of dims */

int rh_dims[NC_MAX_VAR_DIMS]; /* variable shape */

int rh_natts /* number of attributes */

status = nc_open ("foo.nc", NC_NOWRITE, &ncid);
if (status !'= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);

if (status != NC_NOERR) handle_error(status);

/* we don’t need name, since we already know it */

status = nc_inq_var (ncid, rh_id, O, &rh_type, &rh_ndims, rh_dims,
&rh_natts);

if (status != NC_NOERR) handle_error(status);

6.16 Write a Single Data Value: nc_put_varl_ type

The functions nc_put_varl_ type put a single data value of the specified type into a variable
of an open netCDF dataset that is in data mode. Inputs are the netCDF ID, the variable
ID, an index that specifies which value to add or alter, and the data value. The value is
converted to the external data type of the variable, if necessary.

Only the first eight functions listed below (that is, from _text to _double, inclusive) can
be used with the netCDF classic model. Classic and 64-bit offset format files cannot use
the unsigned integer types, the 64-bit integer, or the string type.

Chapter 6: Variables 75

Usage

int nc_put_varl_text (int ncid, int varid, const size_t index[],
const char *tp);

int nc_put_varl_uchar (int ncid, int varid, const size_t index[],
const unsigned char *up);

int nc_put_varl_schar (int ncid, int varid, const size_t index[],
const signed char *cp);

int nc_put_varl_short (int ncid, int varid, const size_t index[],
const short *sp);

int nc_put_varl_int (int ncid, int varid, const size_t index[],
const int *ip);

int nc_put_varl_long (int ncid, int varid, const size_t index[],
const long *1p);

int nc_put_varl_float (int ncid, int varid, const size_t index[],
const float *fp);

int nc_put_varl_double(int ncid, int varid, const size_t index[],
const double *dp);

int nc_put_varl_ubyte (int ncid, int varid, const size_t index[],
const unsigned char *up);

int nc_put_varl_ushort(int ncid, int varid, const size_t index[],
const unsigned short *sp);

int nc_put_varl_uint (int ncid, int varid, const size_t index[],
const unsigned int *ip);

int nc_put_varl_longlong(int ncid, int varid, const size_t index[],

const long long *ip);
int nc_put_varl_ulonglong(int ncid, int varid, const size_t index[],
const unsigned long long *ip);

int nc_put_varl_string(int ncid, int varid, const size_t index[],

const char **ip);

ncid NetCDF ID, from a previous call to nc_open or nc_create.
varid Variable 1D.

index[] The index of the data value to be written. The indices are relative to 0, so for ex-
ample, the first data value of a two-dimensional variable would have index (0,0).
The elements of index must correspond to the variable’s dimensions. Hence, if
the variable uses the unlimited dimension, the first index would correspond to
the unlimited dimension.

76

tp
up
cp
sp
ip
1p
fp
dp

NetCDF C Interface Guide

Pointer to the data value to be written. If the type of data values differs
from the netCDF variable type, type conversion will occur. See section “Type
Conversion” in The NetCDF' Users Guide.

Errors

nc_put_varl_ type returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

The variable ID is invalid for the specified netCDF dataset.

The specified indices were out of range for the rank of the specified variable. For
example, a negative index or an index that is larger than the corresponding dimension
length will cause an error.

The specified value is out of the range of values representable by the external data type
of the variable.

The specified netCDF is in define mode rather than data mode.

The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_put_varl_double to set the (1,2,3) element of the variable named
rh to 0.5 in an existing netCDF dataset named foo.nc. For simplicity in this example, we
assume that we know that rh is dimensioned with time, lat, and lon, so we want to set the
value of rh that corresponds to the second time value, the third lat value, and the fourth
lon value:

#include <netcdf.h>

int status; /* error status */

int ncid; /* netCDF ID */

int rh_id; /* variable ID *x/
static size_t rh_index[] = {1, 2, 3}; /* where to put value */
static double rh_val = 0.5; /* value to put */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);

status = nc_put_varl_double(ncid, rh_id, rh_index, &rh_val);
if (status != NC_NOERR) handle_error(status);

Chapter 6: Variables 7

6.17 Write an Entire Variable: nc_put_var_ type

The nc_put_var_ type family of functions write all the values of a variable into a netCDF
variable of an open netCDF dataset. This is the simplest interface to use for writing a
value in a scalar variable or whenever all the values of a multidimensional variable can all
be written at once. The values to be written are associated with the netCDF variable by
assuming that the last dimension of the netCDF variable varies fastest in the C interface.
The values are converted to the external data type of the variable, if necessary.

Take care when using the simplest forms of this interface with record variables when
you don’t specify how many records are to be written. If you try to write all the values
of a record variable into a netCDF file that has no record data yet (hence has 0 records),
nothing will be written. Similarly, if you try to write all of a record variable but there are
more records in the file than you assume, more data may be written to the file than you
supply, which may result in a segmentation violation.

Usage

int nc_put_var_text (int ncid, int varid, const char *tp);

int nc_put_var_uchar (int ncid, int varid, const unsigned char *up);
int nc_put_var_schar (int ncid, int varid, const signed char *cp);
int nc_put_var_short (int ncid, int varid, const short *sp);

int nc_put_var_int (int ncid, int varid, const int *ip);

int nc_put_var_long (int ncid, int varid, const long *1p);

int nc_put_var_float (int ncid, int varid, const float *fp);

int nc_put_var_double(int ncid, int varid, const double *dp);

ncid NetCDF ID, from a previous call to nc_open or nc_create.

varid Variable ID.

tp

up

cp

sp

ip

1p

fp

dp Pointer to a block of data values to be written. The order in which the data will
be written to the netCDF variable is with the last dimension of the specified
variable varying fastest. If the type of data values differs from the netCDF
variable type, type conversion will occur. See section “Type Conversion” in
The NetCDF Users Guide.

Errors
Members of the nc_put_var_ type family return the value NC_NOERR if no errors occurred.
Otherwise, the returned status indicates an error. Possible causes of errors include:

e The variable ID is invalid for the specified netCDF dataset.

e One or more of the specified values are out of the range of values representable by the
external data type of the variable.

78 NetCDF C Interface Guide

e One or more of the specified values are out of the range of values representable by the
external data type of the variable.

e The specified netCDF dataset is in define mode rather than data mode.

e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_put_var_double to add or change all the values of the variable
named rh to 0.5 in an existing netCDF dataset named foo.nc. For simplicity in this example,
we assume that we know that rh is dimensioned with time, lat, and lon, and that there are
three time values, five lat values, and ten lon values.

#include <netcdf.h>

#tdefine TIMES 3
#define LATS 5
#define LONS 10

int status; /* error status */

int ncid; /* netCDF ID %/

int rh_id; /* variable ID */

double rh_vals[TIMES*LATS*LONS] ; /* array to hold values */
int i;

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);

for (i = 0; i < TIMES*LATS*LONS; i++)
rh_vals[i] = 0.5;
/* write values into netCDF variable */
status = nc_put_var_double(ncid, rh_id, rh_vals);
if (status != NC_NOERR) handle_error(status);

6.18 Write an Array of Values: nc_put_vara_ type

The function nc_put_vara_ type writes values into a netCDF variable of an open netCDF
dataset. The part of the netCDF variable to write is specified by giving a corner and a
vector of edge lengths that refer to an array section of the netCDF variable. The values to
be written are associated with the netCDF variable by assuming that the last dimension of
the netCDF variable varies fastest in the C interface. The netCDF dataset must be in data
mode.

Usage

int nc_put_vara_ type (int ncid, int varid, const size_t startl[],
const size_t count[], const type *valuesp);
int nc_put_vara_text (int ncid, int varid, const size_t start[],

Chapter 6: Variables 79

ncid
varid

start

count

tp
up
cp
sp
ip
1p
fp
dp

int

int

int

int

int

int

int

const size_t count[], const char *tp);
nc_put_vara_uchar (int ncid, int varid, const size_t start[],
const size_t count[], const unsigned char *up);
nc_put_vara_schar (int ncid, int varid, const size_t start[],
const size_t count[], const signed char *cp);
nc_put_vara_short (int ncid, int varid, const size_t startl[],
const size_t count[], const short *sp);
nc_put_vara_int (int ncid, int varid, const size_t startl[],
const size_t count[], const int *ip);
nc_put_vara_long (int ncid, int varid, comnst size_t start[],
const size_t count[], const long *1p);
nc_put_vara_float (int ncid, int varid, const size_t start[],
const size_t count[], const float *fp);
nc_put_vara_double(int ncid, int varid, const size_t start[],
const size_t count[], const double *dp);

NetCDF 1D, from a previous call to nc_open or nc_create.
Variable 1D.

A vector of size_t integers specifying the index in the variable where the first
of the data values will be written. The indices are relative to 0, so for example,
the first data value of a variable would have index (0, 0, ... , 0). The size of
start must be the same as the number of dimensions of the specified variable.
The elements of start must correspond to the variable’s dimensions in order.
Hence, if the variable is a record variable, the first index would correspond to
the starting record number for writing the data values.

A vector of size_t integers specifying the edge lengths along each dimension of
the block of data values to be written. To write a single value, for example,
specify count as (1, 1, ... , 1). The length of count is the number of dimensions
of the specified variable. The elements of count correspond to the variable’s
dimensions. Hence, if the variable is a record variable, the first element of
count corresponds to a count of the number of records to write.

Pointer to a block of data values to be written. The order in which the data will
be written to the netCDF variable is with the last dimension of the specified
variable varying fastest. If the type of data values differs from the netCDF
variable type, type conversion will occur. See section “Type Conversion” in
The NetCDF Users Guide.

80 NetCDF C Interface Guide

Errors
nc_put_vara_ type returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

e The variable ID is invalid for the specified netCDF dataset.

e The specified corner indices were out of range for the rank of the specified variable. For
example, a negative index, or an index that is larger than the corresponding dimension
length will cause an error.

e The specified edge lengths added to the specified corner would have referenced data
out of range for the rank of the specified variable. For example, an edge length that is
larger than the corresponding dimension length minus the corner index will cause an
error.

e One or more of the specified values are out of the range of values representable by the
external data type of the variable.

e The specified netCDF dataset is in define mode rather than data mode.
e The specified netCDF ID does not refer to an open netCDF dataset.

Return Codes

NC_NOERR No error.

NC_EHDFERR
Error reported by HDF5 layer.

NC_EINVALCOORDS
Bad start.

NC_EEDGE Start plus count too large for one of the dimensions.
NC_ECHAR Attempt to convert to or from char.

NC_ENOMEM
Out of memory.

NC_EBADTYPE
Bad type.

NC_ERANGE
Range error - one or more elements of the data were out of range during a
conversion. The operaton completed, with the appropriate fill value used for
the out of range values.

Example

Here is an example using nc_put_vara_double to add or change all the values of the variable
named rh to 0.5 in an existing netCDF dataset named foo.nc. For simplicity in this example,
we assume that we know that rh is dimensioned with time, lat, and lon, and that there are
three time values, five lat values, and ten lon values.

#include <netcdf.h>

Chapter 6: Variables

#define TIMES 3
#define LATS 5
#define LONS 10
int status;

int ncid;

int rh_id;
static size_t st
static size_t co

81

/* error status */

/* netCDF ID */

/* variable ID */
{0, 0, 0}; /* start at first value */
{TIMES, LATS, LONS};

art[]
unt []

double rh_vals[TIMES*LATS*LONS]; /* array to hold values */

int 1i;

status = nc_open("foo.nc", NC_WRITE, &ncid);

if (status != NC

status = nc_inq_
if (status != NC

for (i =0; 1 <
rh_vals[i] =
/* write values
status = nc_put_
if (status != NC

_NOERR) handle_error(status);

varid (ncid, "rh", &rh_id);
_NOERR) handle_error(status);

TIMES*LATS*LONS; i++)
0.5;
into netCDF variable */
vara_double(ncid, rh_id, start, count, rh_vals);
_NOERR) handle_error(status);

6.19 Write a Subsampled Array of Values: nc_put_vars_

type

Each member of the family of functions nc_put_vars_ type writes a subsampled (strided)

array section of values int
array section is specified
netCDF dataset must be

Usage

int nc_put_vars_

int nc_put_vars_

int nc_put_vars_

int nc_put_vars_

int nc_put_vars_

o a netCDF variable of an open netCDF dataset. The subsampled
by giving a corner, a vector of counts, and a stride vector. The
in data mode.

text (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel[],
const char *tp);

uchar (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel[],
const unsigned char *up);

schar (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel],
const signed char *cp);

short (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel[],
const short *sp);

int (int ncid, int varid, const size_t startl[],
const size_t count[], const ptrdiff_t stridel],
const int *ip);

82

NetCDF C Interface Guide

int nc_put_vars_long (int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stridel[],
const long *1p);

int nc_put_vars_float (int ncid, int varid, comnst size_t start[],

const size_t count[], const ptrdiff_t stridel[],
const float *fp);

int nc_put_vars_double(int ncid, int varid, const size_t startl[],

ncid
varid

start

count

stride

tp
up
cp
sp
ip
1p
fp
dp

const size_t count[], const ptrdiff_t stridel],
const double *dp);

NetCDF ID, from a previous call to nc_open or nc_create.
Variable ID.

A vector of size_t integers specifying the index in the variable where the first
of the data values will be written. The indices are relative to 0, so for example,
the first data value of a variable would have index (0, 0, ... , 0). The elements of
start correspond, in order, to the variable’s dimensions. Hence, if the variable
is a record variable, the first index corresponds to the starting record number
for writing the data values.

A vector of size_t integers specifying the number of indices selected along each
dimension. To write a single value, for example, specify count as (1, 1, ... ,
1). The elements of count correspond, in order, to the variable’s dimensions.
Hence, if the variable is a record variable, the first element of count corresponds
to a count of the number of records to write.

A vector of ptrdiff_t integers that specifies the sampling interval along each di-
mension of the netCDF variable. The elements of the stride vector correspond,
in order, to the netCDF variable’s dimensions (stride[0] gives the sampling inter-
val along the most slowly varying dimension of the netCDF variable). Sampling
intervals are specified in type-independent units of elements (a value of 1 selects
consecutive elements of the netCDF variable along the corresponding dimen-
sion, a value of 2 selects every other element, etc.). A NULL stride argument
is treated as (1, 1, ... , 1).

Pointer to a block of data values to be written. The order in which the data will
be written to the netCDF variable is with the last dimension of the specified
variable varying fastest. If the type of data values differs from the netCDF
variable type, type conversion will occur. See section “Type Conversion” in
The NetCDF Users Guide.

Chapter 6: Variables 83

Errors
nc_put_vars_ type returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

e The variable ID is invalid for the specified netCDF dataset.

e The specified start, count and stride generate an index which is out of range.

e One or more of the specified values are out of the range of values representable by the
external data type of the variable.

e The specified netCDF is in define mode rather than data mode.
e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example of using nc_put_vars_float to write — from an internal array — every
other point of a netCDF variable named rh which is described by the C declaration float
rh[4][6] (note the size of the dimensions):

#include <netcdf.h>

#define NDIM 2 /* rank of netCDF variable */

int ncid; /* netCDF ID */
int status; /* error status */
int rhid; /* variable ID */
static size_t start[NDIM] /* netCDF variable start point: */
= {0, 0}; /* first element */
static size_t count [NDIM] /* size of internal array: entire */

= {2, 3}; /* (subsampled) netCDF variable */
static ptrdiff_t stride[NDIM] /* variable subsampling intervals: */
= {2, 2}; /* access every other netCDF element */
float rh([2][3]; /* note subsampled sizes for */
/* netCDF variable dimensions */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status !'= NC_NOERR) handle_error(status);

status = nc_inqg_varid(ncid, "rh", &rhid);
if (status != NC_NOERR) handle_error(status);

status = nc_put_vars_float(ncid, rhid, start, count, stride, rh);
if (status != NC_NOERR) handle_error(status);

6.20 Write a Mapped Array of Values: nc_put_varm_ type

The nc_put_varm_ type family of functions writes a mapped array section of values into
a netCDF variable of an open netCDF dataset. The mapped array section is specified by
giving a corner, a vector of counts, a stride vector, and an index mapping vector. The index
mapping vector is a vector of integers that specifies the mapping between the dimensions of
a netCDF variable and the in-memory structure of the internal data array. No assumptions

84 NetCDF C Interface Guide

are made about the ordering or length of the dimensions of the data array. The netCDF
dataset must be in data mode.

Usage

int nc_put_varm_text (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel],
const ptrdiff_t imap[], const char *tp);

int nc_put_varm_uchar (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel[],
const ptrdiff_t imap[], const unsigned char *up);

int nc_put_varm_schar (int ncid, int varid, const size_t startl[],
const size_t count[], const ptrdiff_t stridel[],
const ptrdiff_t imap[], const signed char *cp);

int nc_put_varm_short (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel],
const ptrdiff_t imap[], const short *sp);

int nc_put_varm_int (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel[],
const ptrdiff_t imap[], const int *ip);

int nc_put_varm_long (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel],
const ptrdiff_t imap[], const long *1lp);

int nc_put_varm_float (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel[],
const ptrdiff_t imap[], const float *fp);

int nc_put_varm_double(int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel[],
const ptrdiff_t imap[], const double *dp);

ncid NetCDF ID, from a previous call to nc_open or nc_create.

varid Variable ID.

start A vector of size_t integers specifying the index in the variable where the first
of the data values will be written. The indices are relative to 0, so for example,
the first data value of a variable would have index (0, 0, ... , 0). The elements of

start correspond, in order, to the variable’s dimensions. Hence, if the variable
is a record variable, the first index corresponds to the starting record number
for writing the data values.

count A vector of size_t integers specifying the number of indices selected along each
dimension. To write a single value, for example, specify count as (1, 1, ... ,
1). The elements of count correspond, in order, to the variable’s dimensions.
Hence, if the variable is a record variable, the first element of count corresponds
to a count of the number of records to write.

stride A vector of ptrdiff_t integers that specifies the sampling interval along each di-
mension of the netCDF variable. The elements of the stride vector correspond,
in order, to the netCDF variable’s dimensions (stride[0] gives the sampling inter-
val along the most slowly varying dimension of the netCDF variable). Sampling

Chapter 6: Variables 85

imap

tp
up
cp
sp
ip
1p
fp
dp

Errors

intervals are specified in type-independent units of elements (a value of 1 selects
consecutive elements of the netCDF variable along the corresponding dimen-
sion, a value of 2 selects every other element, etc.). A NULL stride argument
is treated as (1, 1, ... , 1).

A vector of ptrdiff_t integers that specifies the mapping between the dimensions
of a netCDF variable and the in-memory structure of the internal data array.
The elements of the index mapping vector correspond, in order, to the netCDF
variable’s dimensions (imap|0] gives the distance between elements of the inter-
nal array corresponding to the most slowly varying dimension of the netCDF
variable). Distances between elements are specified in type-independent units
of elements (the distance between internal elements that occupy adjacent mem-
ory locations is 1 and not the element’s byte-length as in netCDF 2). A NULL
argument means the memory-resident values have the same structure as the
associated netCDF variable.

Pointer to the location used for computing where the data values will be found;
the data should be of the type appropriate for the function called. If the type of
data values differs from the netCDF variable type, type conversion will occur.
See section “Type Conversion” in The NetCDF Users Guide.

nc_put_varm_ type returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:
The variable ID is invalid for the specified netCDF dataset.

The specified start, count, and stride generate an index which is out of range. Note
that no error checking is possible on the imap vector.

One or more of the specified values are out of the range of values representable by the
external data type of the variable.

The specified netCDF is in define mode rather than data mode.
The specified netCDF ID does not refer to an open netCDF dataset.

Example

The following imap vector maps in the trivial way a 4x3x2 netCDF variable and an internal
array of the same shape:

float al4][3][2]; /* same shape as netCDF variable */

int

imap[3] = {6, 2, 1};
/* netCDF dimension inter-element distance

[¥ —mmmmmm e

*/
*/

86 NetCDF C Interface Guide

/* most rapidly varying 1
/* intermediate 2 (=imap[2]%*2)
/* most slowly varying 6 (=imap[1]%*3)

Using the imap vector above with nc_put_varm_float obtains the same result as simply
using nc_put_var_float.

Here is an example of using nc_put_varm_float to write — from a transposed, internal
array — a netCDF variable named rh which is described by the C declaration float rh[6][4]
(note the size and order of the dimensions):

#include <netcdf.h>

#define NDIM 2 /* rank of netCDF variable */

int ncid; /* netCDF ID */

int status; /* error status */

int rhid; /* variable ID %/

static size_t start[NDIM] /* netCDF variable start point: */
= {0, 0}; /* first element */

static size_t count [NDIM] /* size of internal array: entire netCDF */
= {6, 4}; /* variable; order corresponds to netCDF */

/* variable -- not internal array */

static ptrdiff_t stride[NDIM]/* variable subsampling intervals: */
= {1, 1}; /* sample every netCDF element */

*/
*/
*/

static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */

= {1, 6}; /* would be {4, 1} if not transposing */

float rh([4][6]; /* note transposition of netCDF variable */

/* dimensions */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status !'= NC_NOERR) handle_error(status);

status = nc_ing_varid(ncid, "rh", &rhid);
if (status != NC_NOERR) handle_error(status);

status = nc_put_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status !'= NC_NOERR) handle_error(status);

Here is another example of using nc_put_varm_float to write — from a transposed, internal
array — a subsample of the same netCDF variable, by writing every other point of the
netCDF variable:

#include <netcdf.h>

#define NDIM 2 /* rank of netCDF variable */

int ncid; /* netCDF ID */

int status; /* error status */

int rhid; /* variable ID */

static size_t start[NDIM] /* netCDF variable start point: */
= {0, 03}; /* first element */

static size_t count [NDIM] /* size of internal array: entire */

Chapter 6: Variables 87

= {3, 2}; /* (subsampled) netCDF variable; order of x/
/* dimensions corresponds to netCDF */

/* variable -- not internal array */
static ptrdiff_t stride[NDIM] /* variable subsampling intervals: */
= {2, 2}; /* sample every other netCDF element */
static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */
= {1, 3}; /* would be {2, 1} if not transposing */
float rh([2] [3]; /* note transposition of (subsampled) */

/* netCDF variable dimensions */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid(ncid, "rh", &rhid);
if (status !'= NC_NOERR) handle_error(status);

status = nc_put_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status != NC_NOERR) handle_error(status);

6.21 Read a Single Data Value: nc_get_varl_ type

The functions nc_get_varl_ type get a single data value from a variable of an open netCDF
dataset that is in data mode. Inputs are the netCDF ID, the variable ID, a multidimensional
index that specifies which value to get, and the address of a location into which the data
value will be read. The value is converted from the external data type of the variable, if
necessary.

Usage

int nc_get_varl_text (int ncid, int varid, const size_t index[],
char *tp);

int nc_get_varl_uchar (int ncid, int varid, const size_t index[],
unsigned char *up);

int nc_get_varl_schar (int ncid, int varid, const size_t index[],
signed char *cp);

int nc_get_varl_short (int ncid, int varid, const size_t index[],
short *sp);

int nc_get_varl_int (int ncid, int varid, const size_t index[],
int *ip);

int nc_get_varl_long (int ncid, int varid, const size_t index[],
long *1p);

int nc_get_varl_float (int ncid, int varid, const size_t index[],
float *fp);

int nc_get_varl_double(int ncid, int varid, const size_t index[],
double *dp);

ncid NetCDF ID, from a previous call to nc_open or nc_create.

varid Variable ID.

88 NetCDF C Interface Guide

index[] The index of the data value to be read. The indices are relative to 0, so for
example, the first data value of a two-dimensional variable would have index
(0,0). The elements of index must correspond to the variable’s dimensions.
Hence, if the variable is a record variable, the first index is the record number.

tp

up

cp

sp

ip

1p

fp

dp Pointer to the location into which the data value is read. If the type of data
value differs from the netCDF variable type, type conversion will occur. See
section “Type Conversion” in The NetCDF Users Guide.

Errors
nc_get_varl_ type returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

e The variable ID is invalid for the specified netCDF dataset.

e The specified indices were out of range for the rank of the specified variable. For
example, a negative index or an index that is larger than the corresponding dimension
length will cause an error.

e The value is out of the range of values representable by the desired data type.
e The specified netCDF is in define mode rather than data mode.
e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_get_varl_double to get the (1,2,3) element of the variable
named rh in an existing netCDF dataset named foo.nc. For simplicity in this example, we
assume that we know that rh is dimensioned with time, lat, and lon, so we want to get the
value of rh that corresponds to the second time value, the third lat value, and the fourth
lon value:

#include <netcdf.h>

int status; /* error status */

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

static size_t rh_index[] = {1, 2, 3}; /* where to get value from */
double rh_val; /* where to put it */

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status !'= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);

Chapter 6: Variables 89

if (status !'= NC_NOERR) handle_error(status);

status = nc_get_varl_double(ncid, rh_id, rh_index, &rh_val);
if (status != NC_NOERR) handle_error(status);

6.22 Read an Entire Variable nc_get_var_ type

The members of the nc_get_var_ type family of functions read all the values from a netCDF
variable of an open netCDF dataset. This is the simplest interface to use for reading the
value of a scalar variable or when all the values of a multidimensional variable can be read
at once. The values are read into consecutive locations with the last dimension varying
fastest. The netCDF dataset must be in data mode.

Take care when using the simplest forms of this interface with record variables when you
don’t specify how many records are to be read. If you try to read all the values of a record
variable into an array but there are more records in the file than you assume, more data
will be read than you expect, which may cause a segmentation violation.

Usage

int nc_get_var_text (int ncid, int varid, char *tp);

int nc_get_var_uchar (int ncid, int varid, unsigned char *up);
int nc_get_var_schar (int ncid, int varid, signed char *cp);
int nc_get_var_short (int ncid, int varid, short *sp);

int nc_get_var_int (int ncid, int varid, int *ip);

int nc_get_var_long (int ncid, int varid, long *1lp);

int nc_get_var_float (int ncid, int varid, float *fp);

int nc_get_var_double(int ncid, int varid, double *dp);

ncid NetCDF 1D, from a previous call to nc_open or nc_create.

varid Variable ID.

tp

up

cp

sp

ip

1p

fp

dp Pointer to the location into which the data value is read. If the type of data
value differs from the netCDF variable type, type conversion will occur. See
section “Type Conversion” in The NetCDF Users Guide.

Errors
nc_get_var_ type returns the value NC_NOERR if no errors occurred. Otherwise, the re-
turned status indicates an error. Possible causes of errors include:

e The variable ID is invalid for the specified netCDF dataset.

e One or more of the values are out of the range of values representable by the desired
type.

90 NetCDF C Interface Guide

e The specified netCDF is in define mode rather than data mode.
e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_get_var_double to read all the values of the variable named rh
from an existing netCDF dataset named foo.nc. For simplicity in this example, we assume
that we know that rh is dimensioned with time, lat, and lon, and that there are three time
values, five lat values, and ten lon values.

#include <netcdf.h>

#tdefine TIMES 3
#define LATS 5
#define LONS 10

int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */

double rh_vals[TIMES*LATS*LONS]; /* array to hold values */

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);

/* read values from netCDF variable */
status = nc_get_var_double(ncid, rh_id, rh_vals);
if (status != NC_NOERR) handle_error(status);

6.23 Read an Array of Values: nc_get_vara_ type

The members of the nc_get_vara_ type family of functions read an array of values from
a netCDF variable of an open netCDF dataset. The array is specified by giving a corner
and a vector of edge lengths. The values are read into consecutive locations with the last
dimension varying fastest. The netCDF dataset must be in data mode.

Usage

int nc_get_vara_text (int ncid, int varid, const size_t start[],
const size_t count[] char *tp);

int nc_get_vara_uchar (int ncid, int varid, const size_t start[],
const size_t count[] unsigned char *up);

int nc_get_vara_schar (int ncid, int varid, const size_t start[],
const size_t count[] signed char *cp);

int nc_get_vara_short (int ncid, int varid, const size_t start[],
const size_t count[] short *sp);

int nc_get_vara_int (int ncid, int varid, const size_t start[],
const size_t count[] int *ip);

Chapter 6: Variables 91

int nc_get_vara_long (int ncid, int varid, const size_t start[],
const size_t count[] long *1p);

int nc_get_vara_float (int ncid, int varid, const size_t start[],
const size_t count[] float *fp);

int nc_get_vara_double(int ncid, int varid, const size_t start[],
const size_t count[] double *dp);

ncid NetCDF ID, from a previous call to nc_open or nc_create.
varid Variable 1D.
start A vector of size_t integers specifying the index in the variable where the first of

the data values will be read. The indices are relative to 0, so for example, the
first data value of a variable would have index (0, 0, ... , 0). The length of start
must be the same as the number of dimensions of the specified variable. The
elements of start correspond, in order, to the variable’s dimensions. Hence, if
the variable is a record variable, the first index would correspond to the starting
record number for reading the data values.

count A vector of size_t integers specifying the edge lengths along each dimension of

tp
up
cp
sp
ip
1p
fp
dp

the block of data values to be read. To read a single value, for example, specify
count as (1, 1, ... , 1). The length of count is the number of dimensions of the
specified variable. The elements of count correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first element of count
corresponds to a count of the number of records to read.

Pointer to the location into which the data value is read. If the type of data
value differs from the netCDF variable type, type conversion will occur. See
section “Type Conversion” in The NetCDF Users Guide.

Errors

nc_get_vara_ type returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

e The variable ID is invalid for the specified netCDF dataset.

e The specified corner indices were out of range for the rank of the specified variable. For

example, a negative index or an index that is larger than the corresponding dimension
length will cause an error.

The specified edge lengths added to the specified corner would have referenced data
out of range for the rank of the specified variable. For example, an edge length that is
larger than the corresponding dimension length minus the corner index will cause an
€error.

92 NetCDF C Interface Guide

e One or more of the values are out of the range of values representable by the desired
type.

e The specified netCDF is in define mode rather than data mode.

e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_get_vara_double to read all the values of the variable named rh
from an existing netCDF dataset named foo.nc. For simplicity in this example, we assume
that we know that rh is dimensioned with time, lat, and lon, and that there are three time
values, five lat values, and ten lon values.

#include <netcdf.h>

#define TIMES 3
#define LATS 5
#define LONS 10

int status; /* error status */
int ncid; /* netCDF ID x/
int rh_id; /* variable ID */

static size_t startl[] {0, 0, 0}; /* start at first value */
static size_t count[] {TIMES, LATS, LONS};
double rh_vals[TIMES*LATS*LONS]; /* array to hold values */

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);

/* read values from netCDF variable */
status = nc_get_vara_double(ncid, rh_id, start, count, rh_vals);
if (status !'= NC_NOERR) handle_error(status);

6.24 Read a Subsampled Array of Values: nc_get_vars_ type

The nc_get_vars_ type family of functions read a subsampled (strided) array section of
values from a netCDF variable of an open netCDF dataset. The subsampled array section
is specified by giving a corner, a vector of edge lengths, and a stride vector. The values are
read with the last dimension of the netCDF variable varying fastest. The netCDF dataset
must be in data mode.

Usage

int nc_get_vars_text (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel[],
char *tp);

int nc_get_vars_uchar (int ncid, int varid, const size_t startl[],
const size_t count[], const ptrdiff_t stridel[],

Chapter 6: Variables 93

int

int

int

int

int

int

ncid

varid

start

count

stride

unsigned char *up);

nc_get_vars_schar (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel[],
signed char *cp);

nc_get_vars_short (int ncid, int varid, comnst size_t start[],
const size_t count[], const ptrdiff_t stridel],
short *sp);

nc_get_vars_int (int ncid, int varid, const size_t startl[],
const size_t count[], const ptrdiff_t stridel[],
int *ip);

nc_get_vars_long (int ncid, int varid, const size_t startl[],
const size_t count[], const ptrdiff_t stridel],
long *1p);

nc_get_vars_float (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridel[],
float *fp);

nc_get_vars_double(int ncid, int varid, const size_t startl[],
const size_t count[], const ptrdiff_t stridel[],
double *dp)

NetCDF ID, from a previous call to nc_open or nc_create.

Variable ID.

A vector of size_t integers specifying the index in the variable where the first of
the data values will be read. The indices are relative to 0, so for example, the
first data value of a variable would have index (0, 0, ... , 0). The elements of
start correspond, in order, to the variable’s dimensions. Hence, if the variable
is a record variable, the first index corresponds to the starting record number
for reading the data values.

A vector of size_t integers specifying the number of indices selected along each
dimension. To read a single value, for example, specify count as (1, 1, ... ,
1). The elements of count correspond, in order, to the variable’s dimensions.
Hence, if the variable is a record variable, the first element of count corresponds
to a count of the number of records to read.

A vector of ptrdiff_t integers specifying, for each dimension, the interval between
selected indices. The elements of the stride vector correspond, in order, to the
variable’s dimensions. A value of 1 accesses adjacent values of the netCDF
variable in the corresponding dimension; a value of 2 accesses every other value
of the netCDF variable in the corresponding dimension; and so on. A NULL
stride argument is treated as (1, 1, ... , 1).

94

tp
up
cp
sp
ip
1p
fp
dp

NetCDF C Interface Guide

Pointer to the location into which the data value is read. If the type of data
value differs from the netCDF variable type, type conversion will occur. See
section “T'ype Conversion” in The NetCDF Users Guide.

Errors

nc_get_vars_ type returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

The variable ID is invalid for the specified netCDF dataset.

The specified start, count and stride generate an index which is out of range.

One or more of the values are out of the range of values representable by the desired

type.

The specified netCDF is in define mode rather than data mode.
The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example that uses nc_get_vars_double to read every other value in each dimension
of the variable named rh from an existing netCDF dataset named foo.nc. For simplicity in
this example, we assume that we know that rh is dimensioned with time, lat, and lon, and
that there are three time values, five lat values, and ten lon values.

#include <netcdf.h>

#define TIMES 3
#define LATS b5
#define LONS 10

int status;

int ncid;

int rh_id;

static size_t start[]
static size_t count[]

{0, 0, 0};

/%
/*
/*
/%

error status */

netCDF ID */

variable ID */

start at first value */

{TIMES, LATS, LONS};
static ptrdiff_t stridel] = {2, 2, 2};/* every other value */
double data[TIMES] [LATS] [LONS];

/*

array to hold values */

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh",
if (status != NC_NOERR) handle_error(status);

&rh_id);

Chapter 6: Variables 95

/* read subsampled values from netCDF variable into array */
status = nc_get_vars_double(ncid, rh_id, start, count, stride,

&data[0] [0] [0]);

if (status != NC_NOERR) handle_error(status);

6.25 Read a Mapped Array of Values: nc_get_varm_ type

The nc_get_varm_ type family of functions reads a mapped array section of values from
a netCDF variable of an open netCDF dataset. The mapped array section is specified by
giving a corner, a vector of edge lengths, a stride vector, and an index mapping vector.
The index mapping vector is a vector of integers that specifies the mapping between the
dimensions of a netCDF variable and the in-memory structure of the internal data array.
No assumptions are made about the ordering or length of the dimensions of the data array.
The netCDF dataset must be in data mode.

Usage

int
int
int
int
int
int
int
int
ncid

varid

start

nc_get_varm_text (int ncid, int varid, comnst size_t start[],

const size_t count[], const ptrdiff_t stridel[],
const ptrdiff_t imap[], char *tp);

nc_get_varm_uchar (int ncid, int varid, const size_t startl[],

const size_t count[], const ptrdiff_t stridel],
const ptrdiff_t imap[], unsigned char *up);

nc_get_varm_schar (int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stridel],
const ptrdiff_t imap[], signed char *cp);

nc_get_varm_short (int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], short *sp);

nc_get_varm_int (int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stridel],
const ptrdiff_t imap[], int *ip);

nc_get_varm_long (int ncid, int varid, comnst size_t start[],

const size_t count[], const ptrdiff_t stridel[],
const ptrdiff_t imap[], long *1p);

nc_get_varm_float (int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stridel],
const ptrdiff_t imapl[], float *fp);

nc_get_varm_double(int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stridel],
const ptrdiff_t imap[], double *dp);

NetCDF ID, from a previous call to nc_open or nc_create.
Variable ID.

A vector of size_t integers specifying the index in the variable where the first of
the data values will be read. The indices are relative to 0, so for example, the

96

count

stride

imap

tp
up
cp
sp
ip
1p
fp
dp

Errors

NetCDF C Interface Guide

first data value of a variable would have index (0, O, ... , 0). The elements of
start correspond, in order, to the variable’s dimensions. Hence, if the variable
is a record variable, the first index corresponds to the starting record number
for reading the data values.

A vector of size_t integers specifying the number of indices selected along each
dimension. To read a single value, for example, specify count as (1, 1, ... ,
1). The elements of count correspond, in order, to the variable’s dimensions.
Hence, if the variable is a record variable, the first element of count corresponds
to a count of the number of records to read.

A vector of ptrdiff_t integers specifying, for each dimension, the interval between
selected indices. The elements of the stride vector correspond, in order, to the
variable’s dimensions. A value of 1 accesses adjacent values of the netCDF
variable in the corresponding dimension; a value of 2 accesses every other value
of the netCDF variable in the corresponding dimension; and so on. A NULL
stride argument is treated as (1, 1, ... , 1).

A vector of integers that specifies the mapping between the dimensions of
a netCDF wvariable and the in-memory structure of the internal data array.
imap[0] gives the distance between elements of the internal array corresponding
to the most slowly varying dimension of the netCDF variable. imap[n-1] (where
n is the rank of the netCDF variable) gives the distance between elements of
the internal array corresponding to the most rapidly varying dimension of the
netCDF variable. Intervening imap elements correspond to other dimensions
of the netCDF variable in the obvious way. Distances between elements are
specified in type-independent units of elements (the distance between internal
elements that occupy adjacent memory locations is 1 and not the element’s
byte-length as in netCDF 2).

Pointer to the location used for computing where the data values are read; the
data should be of the type appropriate for the function called. If the type of
data value differs from the netCDF variable type, type conversion will occur.
See section “Type Conversion” in The NetCDF Users Guide.

nc_get_varm_ type returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

e The variable ID is invalid for the specified netCDF dataset.

e The specified start, count, and stride generate an index which is out of range. Note
that no error checking is possible on the imap vector.

Chapter 6: Variables

97

e One or more of the values are out of the range of values representable by the desired

type.

e The specified netCDF is in define mode rather than data mode.
e The specified netCDF ID does not refer to an open netCDF dataset.

Example

The following imap vector maps in the trivial way a 4x3x2 netCDF variable and an internal

array of the same shape:

float al[4][3][2]; /* same shape as netCDF variable */

size_t imap[3] = {6, 2, 1};
/* netCDF dimension inter-element distance
[¥ mmmmm e
/* most rapidly varying 1
/* intermediate 2 (=imap[2]%*2)
/* most slowly varying 6 (=imap[1]%3)

Using the imap vector above with nc_get_varm_float obtains the same result as simply

using nc_get_var_float.

Here is an example of using nc_get_varm_float to transpose a netCDF variable named
rh which is described by the C declaration float rh[6][4] (note the size and order of the

dimensions):

#include <netcdf.h>

#define NDIM 2

int ncid;
int status;
int rhid;
static size_t start[NDIM]
= {0, 0};
static size_t count [NDIM]
= {6, 4};
static ptrdiff_t stride[NDIM]
= {1, 1};
static ptrdiff_t imap[NDIM]
= {1, 63};

float rh[4][6];

/*
/*
/%
/*
/*
/*
/*
/%
/%
/*
/*
/*
/%
/%
/*

rank of netCDF variable */

netCDF ID x/

error status */

variable ID */

netCDF variable start point: */

first element */

size of internal array: entire netCDF */
variable; order corresponds to netCDF */
variable -- not internal array */
variable subsampling intervals: */
sample every netCDF element */

internal array inter-element distances;
would be {4, 1} if not transposing */
note transposition of netCDF variable */
dimensions */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid(ncid, "rh", &rhid);
if (status != NC_NOERR) handle_error(status);

status = nc_get_varm_float(ncid, rhid, start, count, stride, imap, rh);

*/
*/
*/
*/
*/

*/

98 NetCDF C Interface Guide

if (status !'= NC_NOERR) handle_error(status);

Here is another example of using nc_get_varm_float to simultaneously transpose and
subsample the same netCDF variable, by accessing every other point of the net CDF variable:

#include <netcdf.h>

#define NDIM 2 /* rank of netCDF variable */

int ncid; /* netCDF ID */
int status; /* error status */
int rhid; /* variable ID */
static size_t start[NDIM] /* netCDF variable start point: */
= {0, 0}; /* first element */
static size_t count [NDIM] /* size of internal array: entire */

= {3, 2}; /* (subsampled) netCDF variable; order of */
/* dimensions corresponds to netCDF */
/* variable -- not internal array */
static ptrdiff_t stride[NDIM]/* variable subsampling intervals: */
= {2, 2}; /* sample every other netCDF element */
static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */
= {1, 3}; /* would be {2, 1} if not transposing */
float rh([2][3]; /* note transposition of (subsampled) */
/* netCDF variable dimensions */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_inqg_varid(ncid, "rh", &rhid);
if (status != NC_NOERR) handle_error(status);

status = nc_get_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status !'= NC_NOERR) handle_error(status);

6.26 Reading and Writing Character String Values

Character strings are not a primitive netCDF external data type, in part because FOR-
TRAN does not support the abstraction of variable-length character strings (the FORTRAN
LEN function returns the static length of a character string, not its dynamic length). As
a result, a character string cannot be written or read as a single object in the netCDF
interface. Instead, a character string must be treated as an array of characters, and array
access must be used to read and write character strings as variable data in netCDF datasets.
Furthermore, variable-length strings are not supported by the netCDF interface except by
convention; for example, you may treat a zero byte as terminating a character string, but
you must explicitly specify the length of strings to be read from and written to netCDF
variables.

Character strings as attribute values are easier to use, since the strings are treated as a
single unit for access. However, the value of a character-string attribute is still an array of
characters with an explicit length that must be specified when the attribute is defined.

Chapter 6: Variables 99

When you define a variable that will have character-string values, use a character-position
dimension as the most quickly varying dimension for the variable (the last dimension for the
variable in C). The length of the character-position dimension will be the maximum string
length of any value to be stored in the character-string variable. Space for maximum-length
strings will be allocated in the disk representation of character-string variables whether you
use the space or not. If two or more variables have the same maximum length, the same
character-position dimension may be used in defining the variable shapes.

To write a character-string value into a character-string variable, use either entire vari-
able access or array access. The latter requires that you specify both a corner and a vector
of edge lengths. The character-position dimension at the corner should be zero for C. If the
length of the string to be written is n, then the vector of edge lengths will specify n in the
character-position dimension, and one for all the other dimensions:(1, 1, ... , 1, n).

In C, fixed-length strings may be written to a netCDF dataset without the terminating
zero byte, to save space. Variable-length strings should be written with a terminating zero
byte so that the intended length of the string can be determined when it is later read.

Here is an example that defines a record variable, tx, for character strings and stores
a character-string value into the third record using nc_put_vara_text. In this example, we
assume the string variable and data are to be added to an existing netCDF dataset named
foo.nc that already has an unlimited record dimension time.

#include <netcdf.h>

int ncid; /* netCDF ID */

int chid; /* dimension ID for char positions */
int timeid; /* dimension ID for record dimension */
int tx_id; /* variable ID */

#define TDIMS 2 /* rank of tx variable */

int tx_dims[TDIMS]; /* variable shape */
size_t tx_start[TDIMS];
size_t tx_count [TDIMS];
static char tx_vall] =
"example string"; /* string to be put */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
status = nc_redef (ncid); /* enter define mode */
if (status != NC_NOERR) handle_error(status);

/* define character-position dimension for strings of max length 40 */
status = nc_def_dim(ncid, "chid", 40L, &chid);
if (status != NC_NOERR) handle_error(status);

/* define a character-string variable */

tx_dims[0] = timeid;

tx_dims[1] = chid; /* character-position dimension last */
status = nc_def_var (ncid, "tx", NC_CHAR, TDIMS, tx_dims, &tx_id);
if (status != NC_NOERR) handle_error(status);

100 NetCDF C Interface Guide

status = nc_enddef (ncid); /* leave define mode */
if (status != NC_NOERR) handle_error(status);

/* write tx_val into tx netCDF variable in record 3 */

tx_start[0] = 3; /* record number to write */

tx_start[1] = 0; /* start at beginning of variable */
tx_count [0] = 1; /* only write one record */

tx_count[1] = strlen(tx_val) + 1; /* number of chars to write */

status = nc_put_vara_text(ncid, tx_id, tx_start, tx_count, tx_val);
if (status != NC_NOERR) handle_error(status);

6.27 Fill Values

What happens when you try to read a value that was never written in an open netCDF
dataset? You might expect that this should always be an error, and that you should get an
error message or an error status returned. You do get an error if you try to read data from
a netCDF dataset that is not open for reading, if the variable ID is invalid for the specified
netCDF dataset, or if the specified indices are not properly within the range defined by the
dimension lengths of the specified variable. Otherwise, reading a value that was not written
returns a special fill value used to fill in any undefined values when a netCDF variable is
first written.

You may ignore fill values and use the entire range of a netCDF external data type, but
in this case you should make sure you write all data values before reading them. If you
know you will be writing all the data before reading it, you can specify that no prefilling of
variables with fill values will occur by calling nc_set_fill before writing. This may provide a
significant performance gain for netCDF writes.

The variable attribute _FillValue may be used to specify the fill value for a
variable. Their are default fill values for each type, defined in the include file
netcdf.h: NC_FILL_.CHAR, NC_FILL_.BYTE, NC_FILL_.SHORT, NC_FILL_INT,
NC_FILL_FLOAT, and NC_FILL_DOUBLE.

The netCDF byte and character types have different default fill values. The default fill
value for characters is the zero byte, a useful value for detecting the end of variable-length
C character strings. If you need a fill value for a byte variable, it is recommended that you
explicitly define an appropriate _FillValue attribute, as generic utilities such as ncdump will
not assume a default fill value for byte variables.

Type conversion for fill values is identical to type conversion for other values: attempting
to convert a value from one type to another type that can’t represent the value results in
a range error. Such errors may occur on writing or reading values from a larger type (such
as double) to a smaller type (such as float), if the fill value for the larger type cannot be
represented in the smaller type.

6.28 Rename a Variable: nc_rename_var

The function nc_rename_var changes the name of a netCDF variable in an open netCDF
dataset. If the new name is longer than the old name, the netCDF dataset must be in define
mode. You cannot rename a variable to have the name of any existing variable.

Chapter 6: Variables 101

Usage

int nc_rename_var(int ncid, int varid, const char® name);
ncid NetCDF ID, from a previous call to nc_open or nc_create.
varid Variable ID.
name New name for the specified variable.

Errors
nc_rename_var returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

The new name is in use as the name of another variable. The variable ID is invalid for
the specified netCDF dataset. The specified netCDF ID does not refer to an open netCDF
dataset.

Example

Here is an example using nc_rename_var to rename the variable rh to rel_hum in an existing
netCDF dataset named foo.nc:

#include <netcdf.h>

int status; /* error status */

int ncid; /* netCDF ID */
int rh_id; /* variable ID */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_redef(ncid); /* put in define mode to rename variable */
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);

if (status !'= NC_NOERR) handle_error(status);

status = nc_rename_var (ncid, rh_id, "rel_hum");

if (status != NC_NOERR) handle_error(status);

status = nc_enddef(ncid); /* leave define mode */

if (status !'= NC_NOERR) handle_error(status);

6.29 Change between Collective and Independent Parallel
Access: nc_var_par_access

The function nc_var_par_access changes whether read /write operations on a parallel file sys-
tem are performed collectively (the default) or independently on the variable. This function
can only be called if the file was created with nc_create_par (see Section 2.7 [nc_create_par],
page 17) or opened with nc_open_par (see Section 2.10 [nc_open_par|, page 21).

Calling this function affects only the open file - information about whether a variable
is to be accessed collectively or independently is not written to the data file. Every time
you open a file on a parallel file system, all variables default to collective operations. The
change a variable to independent lasts only as long as that file is open.

102 NetCDF C Interface Guide

The variable can be changed from collective to independent, and back, as often as desired.

Usage

int nc_var_par_access(int ncid, int varid, int access);

ncid NetCDF ID, from a previous call to nc_open_par (see Section 2.10
[nc_open_par|, page 21) or nc_create_par (see Section 2.7 [nc_create_par],
page 17).

varid Variable 1D.

access NC_INDEPENDENT to set this wvariable to independent opera-
tions. NC_COLLECTIVE to set it to collective operations.

Return Values

NC_NOERR No error.

Example

Here is an example using nc_var_par_access:

#include <netcdf.h>

int ncid, v1id, dimids[NDIMS];
int data[DIMSIZE*DIMSIZE], j, 1, res;

/* Create a parallel netcdf-4 file. */
if ((res = nc_create_par(FILE, NC_MPIIO, comm, info, &ncid)))
BAIL(res);

/* Create two dimensions. */

if ((res = nc_def_dim(ncid, "d1", DIMSIZE, dimids)))
BAIL(res);

if ((res = nc_def_dim(ncid, "d2", DIMSIZE, &dimids[1])))
BAIL(res);

/* Create one var. */
if ((res = nc_def_var(ncid, "wvi1", NC_INT, NDIMS, dimids, &v1id)))
BAIL(res);

if ((res = nc_enddef(ncid)))
BAIL(res);

/* Tell HDF5 to use independent parallel access for this var. */
if ((res = nc_var_par_access(ncid, v1id, NC_INDEPENDENT)))
BAIL(res);

Chapter 6: Variables 103

/* Write slabs of phoney data. */

if ((res = nc_put_vara_int(ncid, vlid, start, count,
&data[mpi_rank*QTR_DATA])))
BAIL(res);

104 NetCDF C Interface Guide

Chapter 7: Attributes 105

7 Attributes

7.1 Introduction

Attributes may be associated with each netCDF variable to specify such properties as units,
special values, maximum and minimum valid values, scaling factors, and offsets. Attributes
for a netCDF dataset are defined when the dataset is first created, while the net CDF dataset
is in define mode. Additional attributes may be added later by reentering define mode. A
netCDF attribute has a netCDF variable to which it is assigned, a name, a type, a length,
and a sequence of one or more values. An attribute is designated by its variable ID and
name. When an attribute name is not known, it may be designated by its variable ID and
number in order to determine its name, using the function nc_ing_attname.

The attributes associated with a variable are typically defined immediately after the
variable is created, while still in define mode. The data type, length, and value of an
attribute may be changed even when in data mode, as long as the changed attribute requires
no more space than the attribute as originally defined.

It is also possible to have attributes that are not associated with any variable. These are
called global attributes and are identified by using NC_GLOBAL as a variable pseudo-1D.
Global attributes are usually related to the netCDF dataset as a whole and may be used
for purposes such as providing a title or processing history for a netCDF dataset.

Operations supported on attributes are:
e Create an attribute, given its variable ID, name, data type, length, and value.
e Get attribute’s data type and length from its variable ID and name.
o Get attribute’s value from its variable ID and name.
e Copy attribute from one netCDF variable to another.
e Get name of attribute from its number.
e Rename an attribute.

e Delete an attribute.

7.2 Create an Attribute: nc_put_att_ type

The function nc_put_att_ type adds or changes a variable attribute or global attribute of an
open netCDF dataset. If this attribute is new, or if the space required to store the attribute
is greater than before, the netCDF dataset must be in define mode.

Usage

Wiht netCDF-4 files, nc_put_att will notice if you are writing a _Fill_Value_ attribute, and
will tell the HDF5 layer to use the specifief fill value for that variable.

Although it’s possible to create attributes of all types, text and double attributes are
adequate for most purposes.
int nc_put_att_text (int ncid, int varid, const char *name,
size_t len, const char *tp);
int nc_put_att_uchar (int ncid, int varid, const char #*name,
nc_type xtype, size_t len, const unsigned char *up);

106

int

int

int

int

int

int

ncid

varid

name

xtype

len

nc_put_att_schar
nc_put_att_short
nc_put_att_int
nc_put_att_long

nc_put_att_float

NetCDF C Interface Guide

(int ncid, int varid, const

char *name,

nc_type xtype, size_t len, const signed char *cp);

(int ncid, int varid, const
nc_type xtype, size_t len,
(int ncid, int varid, const
nc_type xtype, size_t len,
(int ncid, int varid, const
nc_type xtype, size_t len,
(int ncid, int varid, const
nc_type xtype, size_t len,

nc_put_att_double (int ncid, int varid, const

char *name,

const short *sp);
char *name,

const int *ip);
char *name,

const long *1p);
char *name,

const float *fp);
char *name,

nc_type xtype, size_t len, const double *dp);

NetCDF ID, from a previous call to nc_open or nc_create.

Variable ID of the variable to which the attribute will be assigned or
NC_GLOBAL for a global attribute.

Attribute name. Must begin with an alphabetic character, followed by zero or
more alphanumeric characters including the underscore (’.’). Case is significant.
Attribute name conventions are assumed by some netCDF generic applications,
e.g., units as the name for a string attribute that gives the units for a netCDF
variable. For examples of attribute conventions see section “Attribute Conven-
tions” in The NetCDEF' Users Guide.

One of the set of predefined netCDF external data types. The type of this pa-
rameter, nc_type, is defined in the netCDF header file. The valid netCDF exter-
nal data types are NC_BYTE, NC_.CHAR, NC_SHORT, NC_INT, NC_FLOAT,
and NC_DOUBLE. Although it’s possible to create attributes of all types,
NC_CHAR and NC_DOUBLE attributes are adequate for most purposes.

Number of values provided for the attribute.

tp, up, cp, sp, ip, 1lp, fp, or dp

Errors

Pointer to one or more values. If the type of values differs from the netCDF
attribute type specified as xtype, type conversion will occur. See section “Type
Conversion” in The NetCDF' Users Guide.

nc_put_att_ type returns the value NC_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

The variable ID is invalid for the specified netCDF dataset.
The specified netCDF type is invalid.
The specified length is negative.

The specified open netCDF dataset is in data mode and the specified attribute would
expand.

The specified open netCDF dataset is in data mode and the specified attribute does
not already exist.

Chapter 7: Attributes 107

e The specified netCDF ID does not refer to an open netCDF dataset.
e The number of attributes for this variable exceeds NC_MAX_ATTRS.

Return Codes

NC_NOERR No error.

NC_EINVAL
Trying to set global _FillValue. (NetCDF-4 files only).

NC_ENOTVAR
Couldn’t find varid.

NC_EBADTYPE
Fill value must be same type as variable. (NetCDF-4 files only).

NC_ENOMEM
Out of memory

NC_EFILLVALUE
Fill values must be written while the file is still in initial define mode, that
is, after the file is created, but before it leaves define mode for the first time.
NC_EFILLVALUE is returned when the user attempts to set the fill value after
it’s too late.

Example

Here is an example using nc_put_att_double to add a variable attribute named valid_range
for a netCDF variable named rh and a global attribute named title to an existing netCDF
dataset named foo.nc:

#include <netcdf.h>

int status; /* error status */

int ncid; /* netCDF ID */

int rh_id; /* variable ID */
static double rh_range[] = {0.0, 100.0};/* attribute vals */
static char title[] = "example netCDF dataset";

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_redef (ncid); /* enter define mode */
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);

if (status !'= NC_NOERR) handle_error(status);

status = nc_put_att_double (ncid, rh_id, "valid_range",
NC_DOUBLE, 2, rh_range);

if (status !'= NC_NOERR) handle_error(status);

status = nc_put_att_text (ncid, NC_GLOBAL, "title",

108 NetCDF C Interface Guide

strlen(title), title)
if (status != NC_NOERR) handle_error(status);

status = nc_enddef (ncid); /* leave define mode */
if (status != NC_NOERR) handle_error(status);

7.3 Get Information about an Attribute: nc_inq_att Family

This family of functions returns information about a netCDF attribute. All but one of these
functions require the variable ID and attribute name; the exception is nc_ing_attname.
Information about an attribute includes its type, length, name, and number. See the
nc_get_att family for getting attribute values.

The function nc_inq_attname gets the name of an attribute, given its variable ID and
number. This function is useful in generic applications that need to get the names of all
the attributes associated with a variable, since attributes are accessed by name rather than
number in all other attribute functions. The number of an attribute is more volatile than
the name, since it can change when other attributes of the same variable are deleted. This
is why an attribute number is not called an attribute ID.

The function nc_inq_att returns the attribute’s type and length. The other functions
each return just one item of information about an attribute.

Usage

int nc_inqg_att (int ncid, int varid, const char *name,
nc_type *xtypep, size_t *lenp);
int nc_inqg_atttype(int ncid, int varid, const char *name,
nc_type *xtypep);
int nc_inq_attlen (int ncid, int varid, const char *name, size_t *lenp);
int nc_ing_attname(int ncid, int varid, int attnum, char *name);
int nc_inq_attid (int ncid, int varid, const char *name, int *attnump);

ncid NetCDF ID, from a previous call to nc_open or nc_create.
varid Variable ID of the attribute’s variable, or NC_GLOBAL for a global attribute.
name Attribute name. For nc_ing_attname, this is a pointer to the location for the

returned attribute name.

xtypep Pointer to location for returned attribute type, one of the set of predefined
netCDF external data types. The type of this parameter, nc_type, is defined in
the netCDF header file. The valid netCDF external data types are NC_BYTE,
NC_CHAR, NC_SHORT, NC_INT, NC_FLOAT, and NC_DOUBLE. If this
parameter is given as '0’ (a null pointer), no type will be returned so no variable
to hold the type needs to be declared.

lenp Pointer to location for returned number of values currently stored in the at-
tribute. For attributes of type NC_CHAR, you should not assume that this
includes a trailing zero byte; it doesn’t if the attribute was stored without a
trailing zero byte, for example from a FORTRAN program. Before using the
value as a C string, make sure it is null-terminated. If this parameter is given

Chapter 7: Attributes 109

as ’0’ (a null pointer), no length will be returned so no variable to hold this
information needs to be declared.

attnum For nc_ing_attname, attribute number. The attributes for each variable are

numbered from 0 (the first attribute) to natts-1, where natts is the number of
attributes for the variable, as returned from a call to nc_inq_varnatts.

attnump For nc_ing_attid, pointer to location for returned attribute number that specifies

which attribute this is for this variable (or which global attribute). If you
already know the attribute name, knowing its number is not very useful, because
accessing information about an attribute requires its name.

Errors

Each function returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

The variable ID is invalid for the specified netCDF dataset.
The specified attribute does not exist.
The specified netCDF ID does not refer to an open netCDF dataset.

For nc_inq_attname, the specified attribute number is negative or more than the number
of attributes defined for the specified variable.

Example

Here is an example using nc_inqg_att to find out the type and length of a variable attribute
named valid_range for a netCDF variable named rh and a global attribute named title in
an existing netCDF dataset named foo.nc:

#include <netcdf.h>

int status; /* error status */

int ncid; /* netCDF ID */

int rh_id; /* variable ID */
nc_type vr_type, t_type; /* attribute types */
int vr_len, t_len; /* attribute lengths */

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_att (ncid, rh_id, "valid_range", &vr_type, &vr_len);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_att (ncid, NC_GLOBAL, "title", &t_type, &t_len);

if (status != NC_NOERR) handle_error(status);

110 NetCDF C Interface Guide

7.4 Get Attribute’s Values:nc_get_att_ type

Members of the nc_get_att_ type family of functions get the value(s) of a netCDF attribute,
given its variable ID and name.

Usage

int nc_get_att_text (int ncid, int varid, const char *name,
char *tp);

int nc_get_att_uchar (int ncid, int varid, const char *name,
unsigned char *up);

int nc_get_att_schar (int ncid, int varid, const char *name,
signed char *cp);

int nc_get_att_short (int ncid, int varid, const char *name,
short *sp);

int nc_get_att_int (int ncid, int varid, const char *name,
int *ip);

int nc_get_att_long (int ncid, int varid, const char *name,
long *1p);

int nc_get_att_float (int ncid, int varid, const char *name,
float *fp);

int nc_get_att_double (int ncid, int varid, const char *name,
double *dp);

ncid NetCDF ID, from a previous call to nc_open or nc_create.
varid Variable ID of the attribute’s variable, or NC_GLOBAL for a global attribute.

name Attribute name.

tp

up

cp

sp

ip

1p

fp

dp Pointer to location for returned attribute value(s). All elements of the vector of
attribute values are returned, so you must allocate enough space to hold them.
For attributes of type NC_CHAR, you should not assume that the returned
values include a trailing zero byte; they won’t if the attribute was stored without
a trailing zero byte, for example from a FORTRAN program. Before using the
value as a C string, make sure it is null-terminated. If you don’t know how much
space to reserve, call nc_ing_attlen first to find out the length of the attribute.

Errors

nc_get_att_ type returns the value NC_NOERR if no errors occurred. Otherwise, the re-
turned status indicates an error. Possible causes of errors include:

e The variable ID is invalid for the specified netCDF dataset.

Chapter 7: Attributes 111

e The specified attribute does not exist.
e The specified netCDF ID does not refer to an open netCDF dataset.

e One or more of the attribute values are out of the range of values representable by the
desired type.

Example

Here is an example using nc_get_att_double to determine the values of a variable attribute
named valid_range for a netCDF variable named rh and a global attribute named title in
an existing netCDF dataset named foo.nc. In this example, it is assumed that we don’t
know how many values will be returned, but that we do know the types of the attributes.
Hence, to allocate enough space to store them, we must first inquire about the length of
the attributes.

#include <netcdf.h>

int status; /* error status */

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

int vr_len, t_len; /* attribute lengths */
double *vr_val; /* ptr to attribute values */
char *title; /* ptr to attribute values */
extern char *malloc(); /* memory allocator */

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status !'= NC_NOERR) handle_error(status);

/* find out how much space is needed for attribute values */
status = nc_ing_attlen (ncid, rh_id, "valid_range", &vr_len);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_attlen (ncid, NC_GLOBAL, "title", &t_len);

if (status !'= NC_NOERR) handle_error(status);

/* allocate required space before retrieving values */
vr_val = (double *) malloc(vr_len * sizeof(double));
title = (char *) malloc(t_len + 1); /* + 1 for trailing null */

/* get attribute values */

status = nc_get_att_double(ncid, rh_id, "valid_range", vr_val);
if (status != NC_NOERR) handle_error(status);

status = nc_get_att_text(ncid, NC_GLOBAL, "title", title);

if (status != NC_NOERR) handle_error(status);

title[t_len] = ’\0’; /* null terminate */

112 NetCDF C Interface Guide

7.5 Copy Attribute from One NetCDF to Another:
nc_copy._att

The function nc_copy_att copies an attribute from one open netCDF dataset to another. It
can also be used to copy an attribute from one variable to another within the same netCDF.

Usage

int nc_copy_att (int ncid_in, int varid_in, const char *name,
int ncid_out, int varid_out);

ncid_in The netCDF ID of an input netCDF dataset from which the attribute will be
copied, from a previous call to nc_open or nc_create.

varid_in ID of the variable in the input netCDF dataset from which the attribute will
be copied, or NC_GLOBAL for a global attribute.

name Name of the attribute in the input netCDF dataset to be copied.

ncid_out The netCDF ID of the output netCDF dataset to which the attribute will be
copied, from a previous call to nc_open or nc_create. It is permissible for the
input and output netCDF IDs to be the same. The output netCDF dataset
should be in define mode if the attribute to be copied does not already exist for
the target variable, or if it would cause an existing target attribute to grow.

varid_out
ID of the variable in the output netCDF dataset to which the attribute will be
copied, or NC_GLOBAL to copy to a global attribute.

Errors
nc_copy_att returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The input or output variable ID is invalid for the specified netCDF dataset.

e The specified attribute does not exist.

e The output netCDF is not in define mode and the attribute is new for the output
dataset is larger than the existing attribute.

e The input or output netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_copy_att to copy the variable attribute units from the variable
rh in an existing netCDF dataset named foo.nc to the variable avgrh in another existing
netCDF dataset named bar.nc, assuming that the variable avgrh already exists, but does
not yet have a units attribute:

#include <netcdf.h>

int status; /* error status */
int ncidl, ncid?2; /* netCDF IDs */
int rh_id, avgrh_id; /* variable IDs */

Chapter 7: Attributes 113

7.6

status = nc_open("foo.nc", NC_NOWRITE, ncidl);
if (status != NC_NOERR) handle_error(status);
status = nc_open("bar.nc", NC_WRITE, ncid2);

if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncidl, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
status = nc_inq_varid (ncid2, "avgrh", &avgrh_id);
if (status !'= NC_NOERR) handle_error(status);

status = nc_redef(ncid2); /* enter define mode */

if (status != NC_NOERR) handle_error(status);

/* copy variable attribute from "rh" to "avgrh" */

status = nc_copy_att(ncidl, rh_id, "units", ncid2, avgrh_id);
if (status !'= NC_NOERR) handle_error(status);

status = nc_enddef(ncid2); /* leave define mode */
if (status != NC_NOERR) handle_error(status);

Rename an Attribute: nc_rename_att

The function nc_rename_att changes the name of an attribute. If the new name is longer
than the original name, the netCDF dataset must be in define mode. You cannot rename

an att

ribute to have the same name as another attribute of the same variable.

Usage

ncid
varid

name

int nc_rename_att (int ncid, int varid, const char* name,
const char* newname) ;

NetCDF ID, from a previous call to nc_open or nc_create
ID of the attribute’s variable, or NC_GLOBAL for a global attribute

The current attribute name.

newname The new name to be assigned to the specified attribute. If the new name is

longer than the current name, the netCDF dataset must be in define mode.

Errors

nc_rename_att returns the value NC_NOERR if no errors occurred. Otherwise, the returned

status

indicates an error. Possible causes of errors include:

e The specified variable ID is not valid.

e The new attribute name is already in use for another attribute of the specified variable.

e The specified netCDF dataset is in data mode and the new name is longer than the
old name.

o T
o T

he specified attribute does not exist.
he specified netCDF ID does not refer to an open netCDF dataset.

114 NetCDF C Interface Guide

Example

Here is an example using nc_rename_att to rename the variable attribute units to Units for
a variable rh in an existing netCDF dataset named foo.nc:

#include <netcdf.h>

int status; /* error status */

int ncid; /* netCDF ID */
int rh_id; /* variable id */

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status !'= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);

/* rename attribute */
status = nc_rename_att(ncid, rh_id, "units", "Units");
if (status != NC_NOERR) handle_error(status);

7.7 Delete an Attribute: nc_del_att

The function nc_del_att deletes a netCDF attribute from an open netCDF dataset. The
netCDF dataset must be in define mode.

Usage

int nc_del_att (int ncid, int varid, const char® name);

ncid NetCDF ID, from a previous call to nc_open or nc_create.

varid ID of the attribute’s variable, or NC_GLOBAL for a global attribute.

name The name of the attribute to be deleted.

Errors

nc_del_att returns the value NC_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The specified variable ID is not valid.

e The specified netCDF dataset is in data mode.

e The specified attribute does not exist.

e The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using nc_del_att to delete the variable attribute Units for a variable rh
in an existing netCDF dataset named foo.nc:

#include <netcdf.h>

Chapter 7: Attributes 115

int status; /* error status */

int ncid; /* netCDF ID */
int rh_id; /* variable ID */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);

/* delete attribute */

status = nc_redef (ncid); /* enter define mode */
if (status != NC_NOERR) handle_error(status);

status = nc_del_att(ncid, rh_id, "Units");

if (status != NC_NOERR) handle_error(status);

status = nc_enddef (ncid); /* leave define mode */
if (status != NC_NOERR) handle_error(status);

116 NetCDF C Interface Guide

Appendix A: Summary of C Interface

117

Appendix A Summary of C Interface

const char* nc_inqg_libvers (void);
const char* nc_strerror

int
int
int
int
int
int
int
int
int

int
int
int
int

int

int
int
int
int
int

int

int

int
int
int
int
int
int
int
int
int
int
int
int
int
int

nc_create
nc_open
nc_set_fill
nc_redef
nc_enddef
nc_sync
nc_abort
nc_close
nc_inq

nc_ing_ndims
nc_ing_nvars
nc_ing_natts
nc_ing_unlimdim

nc_def_dim

nc_inq_dimid
nc_inqg_dim
nc_inq_dimname
nc_inqg_dimlen
nc_rename_dim

nc_def_var

nc_ing_var

nc_inq_varid
nc_inq_varname
nc_ing_vartype
nc_inq_varndims
nc_inqg_vardimid
nc_inq_varnatts
nc_rename_var
nc_put_var_text
nc_get_var_text
nc_put_var_uchar
nc_get_var_uchar
nc_put_var_schar
nc_get_var_schar
nc_put_var_short

(int ncerr);

(const char *path, int cmode, int *ncidp);
(const char *path, int mode, int *ncidp);
ncid, int fillmode, int *old_modep);

(int
(int
(int
(int
(int
(int
(int

int
(int
(int
(int
(int

(int

int
(int
(int
(int
(int
(int

(int
int
(int

ncid);
ncid);
ncid);
ncid) ;
ncid);

ncid,

*ngattsp,

ncid,
ncid,
ncid,
ncid,

ncid,

*idp) ;

ncid,
ncid,
ncid,
ncid,
ncid,

ncid,

ndims,

ncid,

int

int
int
int
int

const char

const char
int dimid,
int dimid,
int dimid,
int dimid,
const char

const int
int wvarid,

nc_type *xtypep, int
int *nattsp);

int
(int
(int
(int
(int
(int
(int
(int
(int
(int
(int
(int
(int
(int
(int

ncid,
ncid,
ncid,
ncid,
ncid,
ncid,
ncid,
ncid,
ncid,
ncid,
ncid,
ncid,
ncid,
ncid,

const char
int varid,
int wvarid,
int varid,
int varid,
int varid,
int varid,
int varid,
int varid,
int varid,
int varid,
int varid,
int wvarid,
int varid,

*ndimsp, int *nvarsp,
int *unlimdimidp);
*xndimsp) ;

*nvarsp) ;

*ngattsp) ;
*unlimdimidp) ;

*name, size_t len,

*name, int *idp);
char *name, size_t *lenp);
char *name);
size_t *lenp);
const char *name);

*name, nc_type xtype,
*dimidsp, int *varidp);
char *name,

*ndimsp, int *dimidsp,

*name, int *varidp);

char *name);

nc_type *xtypep);

int *ndimsp);

int *dimidsp);

int *nattsp);

const char *name);

const char *op);

char *ip);

unsigned char *op);
unsigned char *ip);
signed char *op);
signed char *ip);
short *op);

const

const

const

118 NetCDF C Interface Guide

int nc_get_var_short (int ncid, int varid, short *ip);
int nc_put_var_int (int ncid, int varid, const int *op);
int nc_get_var_int (int ncid, int varid, int *ip);
int nc_put_var_long (int ncid, int varid, const long *op);
int nc_get_var_long (int ncid, int varid, long *ip);
int nc_put_var_float (int ncid, int varid, const float *op);
int nc_get_var_float (int ncid, int varid, float *ip);
int nc_put_var_double (int ncid, int varid, const double *op);
int nc_get_var_double (int ncid, int varid, double *ip);

int nc_put_varl_text (int ncid, int varid, const size_t *indexp,
const char *op);

int nc_get_varl_text (int ncid, int varid, const size_t *indexp,
char *ip);

int nc_put_varl_uchar (int ncid, int varid, const size_t *indexp,
const unsigned char *op);

int nc_get_varl_uchar (int ncid, int varid, const size_t *indexp,
unsigned char *ip);

int nc_put_varl_schar (int ncid, int varid, const size_t *indexp,
const signed char *op);

int nc_get_varl_schar (int ncid, int varid, const size_t *indexp,
signed char *ip);

int nc_put_varl_short (int ncid, int varid, const size_t *indexp,
const short *op);

int nc_get_varl_short (int ncid, int varid, const size_t *indexp,
short *ip);

int nc_put_varl_int (int ncid, int varid, const size_t *indexp,
const int *op);

int nc_get_varl_int (int ncid, int varid, const size_t *indexp,
int *ip);

int nc_put_varl_long (int ncid, int varid, const size_t *indexp,
const long *op);

int nc_get_varl_long (int ncid, int varid, const size_t *indexp,
long *ip);

int nc_put_varl_float (int ncid, int varid, const size_t *indexp,
const float *op);

int nc_get_varl_float (int ncid, int varid, const size_t *indexp,
float *ip);

int nc_put_varl_double(int ncid, int varid, const size_t *indexp,
const double *op);

int nc_get_varl_double(int ncid, int varid, const size_t *indexp,
double *ip);

int nc_put_vara_text (int ncid, int varid, const size_t *startp,
const size_t *countp, const char *op);

int nc_get_vara_text (int ncid, int varid, const size_t *startp,
const size_t *countp, char *ip);

int nc_put_vara_uchar (int ncid, int varid, const size_t *startp,
const size_t *countp, const unsigned char *op);

Appendix A: Summary of C Interface 119

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

nc_get_vara_uchar
nc_put_vara_schar
nc_get_vara_schar
nc_put_vara_short
nc_get_vara_short
nc_put_vara_int
nc_get_vara_int
nc_put_vara_long
nc_get_vara_long
nc_put_vara_float

nc_get_vara_float

(int ncid, int varid, const size_t *startp,
const size_t *countp, unsigned char *ip);
(int ncid, int varid, const size_t *startp,
const size_t *countp, const signed char *op);
(int ncid, int varid, const size_t *startp,
const size_t *countp, signed char *ip);
(int ncid, int varid, const size_t *startp,
const size_t *countp, const short *op);
(int ncid, int varid, const size_t *startp,
const size_t *countp, short *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const int *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, int *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const long *op);
(int ncid, int varid, const size_t *startp,
const size_t *countp, long *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const float *op);
(int ncid, int varid, const size_t *startp,
const size_t *countp, float *ip);

nc_put_vara_double(int ncid, int varid, const size_t *startp,

const size_t *countp, const double *op);

nc_get_vara_double(int ncid, int varid, const size_t *startp,

nc_put_vars_text

nc_get_vars_text

nc_put_vars_uchar

nc_get_vars_uchar

nc_put_vars_schar

nc_get_vars_schar

nc_put_vars_short

const size_t *countp, double *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const char *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
char *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const unsigned char *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
unsigned char *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const signed char *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
signed char *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const short *op);

120

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

nc_get_vars_short

nc_put_vars_int

nc_get_vars_int

nc_put_vars_long

nc_get_vars_long

nc_put_vars_float

nc_get_vars_float

NetCDF C Interface Guide

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
short *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const int *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
int *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const long *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
long *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const float *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
float *ip);

nc_put_vars_double(int ncid, int varid, const size_t *startp,

const size_t *countp, const ptrdiff_t *stridep,
const double *op);

nc_get_vars_double(int ncid, int varid, const size_t *startp,

nc_put_varm_text

nc_get_varm_text

nc_put_varm_uchar

nc_get_varm_uchar

nc_put_varm_schar

nc_get_varm_schar

nc_put_varm_short

const size_t *countp, const ptrdiff_t *stridep,
double *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const char *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, char *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const unsigned char *op);
(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, unsigned char *ip);
(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const signed char *op);
(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, signed char *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,

Appendix A: Summary of C Interface

int

int

int

int

int

int

int

int

int

int

int
int

int

int
int

int

int
int

int
int

nc_get_varm_short

nc_put_varm_int

nc_get_varm_int

nc_put_varm_long

nc_get_varm_long

nc_put_varm_float

nc_get_varm_float

121

const ptrdiff_t *imapp, const short *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, short *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const int *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, int *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const long *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, long *ip);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const float *op);

(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, float *ip);

nc_put_varm_double(int ncid, int varid, const size_t *startp,

const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const double *op);

nc_get_varm_double(int ncid, int varid, const size_t *startp,

nc_inqg_att

nc_inqg_attid
nc_inq_atttype

nc_inqg_attlen

nc_inq_attname
nc_copy_att

nc_rename_att

nc_del_att
nc_put_att_text

nc_get_att_text
nc_put_att_uchar

const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t * imap, double *ip);

(int ncid, int varid, comnst char
nc_type *xtypep, size_t *lenp);
(int ncid, int varid, const char
(int ncid, int varid, const char
nc_type *xtypep);

(int ncid, int varid, const char
size_t *lenp);

*name,

*name,
*name,

int *idp);

*name,

(int ncid, int varid, int attnum, char *name);
(int ncid_in, int varid_in, const char *name,
int ncid_out, int varid_out);

(int ncid, int varid,
const char *newname) ;
(int ncid, int varid, const
(int ncid, int varid, const
const char *op);

(int ncid, int varid, const
(int ncid, int varid, const
nc_type xtype, size_t len,

const char *name,

*name) ;
*name,

char
char size_t 1len,
char
char

*name, char *ip);
*name,

const unsigned char *op);

122

int

int

int

int

int
int

int
int

int
int

int
int

int

nc_get_att_uchar
nc_put_att_schar
nc_get_att_schar
nc_put_att_short

nc_get_att_short
nc_put_att_int

nc_get_att_int
nc_put_att_long

nc_get_att_long
nc_put_att_float

nc_get_att_float
nc_put_att_double

nc_get_att_double

NetCDF C Interface Guide

(int ncid, int varid, const
unsigned char *ip);

(int ncid, int varid, const
nc_type xtype, size_t len,
(int ncid, int varid, const
signed char *ip);

(int ncid, int varid, const
nc_type xtype, size_t len,
(int ncid, int varid, const
(int ncid, int varid, const
nc_type xtype,size_t len,
(int ncid, int varid, const
(int ncid, int varid, const

char

char

*name,

*name,

const signed char *op);

char

char

const short

char
char

const

char
char

*name,

*name,

*op) ;
*name, short *ip);
*name,

int *op);

*name, int *ip);
*name,

nc_type xtype, size_t len, const long *op);
(int ncid, int varid, const char *name, long *ip);
(int ncid, int varid, const char *name,
nc_type xtype, size_t len, const float *op);
(int ncid, int varid, const char *name, float *ip);
(int ncid, int varid, const char *name,
nc_type xtype, size_t len, const double *op);
(int ncid, int varid, const char *name,

double *ip);

Appendix B: NetCDF 3 Transition Guide 123

Appendix B NetCDF 3 Transition Guide

NetCDF-3 programs, relinked against the netCDF-4 library, will continue to work exactly
as before. Since the default create mode in nc_create is to create a classic format file, using
unmodified netCDF-3 code with the netCDF-4 library will result in the exact same output
- a classic netCDF file.

The extra features of netCDF-4 can only be accessed by adding the NETCDF4 flag to
the create mode of nc_create. Files created with the NETCCDF4 flag can have multiple

unlimited dimensions, use the new atomic types, use compound and opaque types, and take
advantage of the other features of netCDF-4.

124 NetCDF C Interface Guide

Appendix C: NetCDF-3 Error Codes

125

Appendix C NetCDF-3 Error Codes

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/* N.B.
#define
#define

#define

#define
#define

NC_NOERR

NC_EBADID
NC_ENFILE
NC_EEXIST
NC_EINVAL
NC_EPERM
NC_ENOTINDEFINE
NC_EINDEFINE
NC_EINVALCOORDS
NC_EMAXDIMS
NC_ENAMEINUSE
NC_ENOTATT
NC_EMAXATTS
NC_EBADTYPE
NC_EBADDIM
NC_EUNLIMPOS
NC_EMAXVARS
NC_ENOTVAR
NC_EGLOBAL
NC_ENOTNC
NC_ESTS
NC_EMAXNAME
NC_EUNLIMIT
NC_ENORECVARS
NC_ECHAR
NC_EEDGE
NC_ESTRIDE
NC_EBADNAME

0

(-33)
(-34)
(-35)
(-36)
(=37)
(-38)
(-39)
(-40)
(-41)
(-42)
(-43)
(-44)
(-45)
(-46)
(-47)
(-48)
(-49)
(-50)
(-51)
(-52)
(-53)
(-54)
(-55)
(-56)
(-57)
(-58)
(-59)

/*

/*
/*
/*
/%
/%
/*
/*
/*
/%
/%
/*
/*
/*
/%
/*
/*
/*
/*
/%
/*
/*
/*
/*
/%
/*
/*
/*

following must match value

NC_ERANGE
NC_ENOMEM

NC_EVARSIZE

NC_EDIMSIZE
NC_ETRUNC

(-60)
(-61)

(-62)

(-63)
(-64)

/*
/*

/*

/*
/*

No Error */

Not a netcdf id */
Too many netcdfs open */
netcdf file exists && NC_NOCLOBBER */
Invalid Argument */
Write to read only */
Operation not allowed in data mode */
Operation not allowed in define mode */
Index exceeds dimension bound */
NC_MAX_DIMS exceeded */
String match to name in use */
Attribute not found */
NC_MAX_ATTRS exceeded */
Not a netcdf data type */
Invalid dimension id or name */
NC_UNLIMITED in the wrong index */
NC_MAX_VARS exceeded */
Variable not found */
Action prohibited on NC_GLOBAL varid */
Not a netcdf file */
In Fortran, string too short */
NC_MAX_NAME exceeded */
NC_UNLIMITED size already in use */
nc_rec op when there are no record vars */
Attempt to convert between text & numbers */
Edge+start exceeds dimension bound */
Illegal stride */
Attribute or variable name

contains illegal characters */
in ncx.h */
Math result not representable */
Memory allocation (malloc) failure */

One or more variable sizes violate

format constraints */

Invalid dimension size */

File likely truncated or possibly corrupted */

126 NetCDF C Interface Guide

Appendix D: NetCDF-4 Error Codes 127

Appendix D NetCDF-4 Error Codes

NetCDF-4 uses all error codes from NetCDF-3 (see Appendix C [NetCDF-3 Error Codes],
page 125). The following additional error codes were added for new errors unique to
netCDF-4.

#define NC_EHDFERR (-101)
#define NC_ECANTREAD (-102)
#define NC_ECANTWRITE (-103)
#define NC_ECANTCREATE (-104)

#define NC_EFILEMETA (-105)
#define NC_EDIMMETA (-106)
#define NC_EATTMETA (-107)
#define NC_EVARMETA (-108)

#define NC_ENOCOMPOUND (-109)
#define NC_EATTEXISTS (-110)

#define NC_ENOTNC4 (-111) /* Attempting netcdf-4 operation on netcdf-3 file. */
#define NC_ESTRICTNC3 (-112) /* Attempting netcdf-4 operation on strict nc3 netcdf-
#define NC_EBADGRPID (-113) /* Bad group id. Bad! */

#define NC_EBADTYPEID (-114) /* Bad type id. */
#define NC_EBADFIELDID (-115) /* Bad field id. =/
#define NC_EUNKNAME (-116)

128 NetCDF C Interface Guide

Chapter 8: Index

8 Index

A

abnormal termination......................... 3
aborting define mode....................... ... 6
aborting definitions 6
adding attributes L 6
adding attributes using nc_redef 22
adding dimensions L 6
adding dimensions using nc_redef 22
adding variables oL 6
adding variables using nc_redef 22
APL, Csummary ..o, 117
appending data to variable 61
array section, reading mapped 90
array section, reading subsampled............. 92
array section, writing 78
array section, writing mapped 90
array section, writing subsampled 92
array, writing mapped..........., 83
attnum. ... 109
attnump. 109
attributes, adding........... 6
attributes, character string 98
attributes, copying................ 112
attributes, creating 105
attributes, deleting 114
attributes, deleting, introduction............... 6
attributes, finding length 108
attributes, getting information about......... 108
attributes, ID 108
attributes, inquiring about 108
attributes, introduction 105
attributes, number of 27
attributes, operationson 105
attributes, reading L 110
attributes, renamingo L 113
attributes, writing o o L 105

B

backing out of definitions..................... 30
big-endian........... 70
bit lengths of data types 61
bit lengths of netcdf-3 data types 62
bit lengths of netcdf-4 data types 62
byte vs. char fill values...................... 100
byte, Zero 98

C

CAPI summarycooveeeennnnnnnn.. 117
call sequence, typical.......................... 3
canceling definitions L 30
character-string data, writing................. 98

chunking.......... i il 65

129
code templates 3
compiling with netCDF library 7
compound types, OVerview 51
compression, setting parameters............... 67
copying attributes, 112
create flag, setting default 32
creating a dataset................. 3
creating variables 63
datasets, overview il 9
deflate ... 67
deleting attributes............... 114
dimensions, adding. 6
dimensions, number of 27
E
endianness 70
entire variable, reading 89
entire variable, writing "
enum type ... 60
EITOT COAES v v ettt et e e 12
error codes, netedf-3 125
error codes, netedf-4 127
error handling L. 7
fillvalues 100
fletcher32 ... 69
format version............ ... oo 27
GrOUPS, OVETVIEW . o o\ttt et e e e ee s 35
handle_err........... 12
HDF5 errors, first create.................. 13, 19
inquiring about attributes................... 108
inquiring about variables............... 72
interface descriptions.......................... 9
length of attributes 108
1enp . oot 108
linking to netCDF library 7

130

little-endian 70

M

mapped array section, writing 95
mapped array, writing. 83

NAME . o oottt et e 108
nc__create........ L i il 15
nc__create, example.............. 15
nc__create, flags o oLl 15
ne__enddef 24
nc__enddef, example 24
NC__OPEIL . ettt et et 20
nc__open, example L 20
NC_64BIT_OFFSET 13, 15
nc_abort ... 30
nc_abort, example L 30
NC.CLOBBER...............ii.. 13, 15, 17
NC_CloSe. ... 26
nc_close, example L 26
nc_close, root group. ... 26
nc_close, typical use........... 3
nc_copy-att 112
nc_copy-att, example L 112
nc.create....... ... 13
nc_create, example.......... 13
nc_create, flags L 13
nc_create, typical use 3
nc_create_par............ i 17
nc_create_par, example....................... 17
nc_create_par, flags L 17
nc_def_compound, 51
nedef dim............ ... 45
nc_def_dim, example 45
nc_def_dim, typical use 3,6
nedef_grp ... 42
ne_def opaque............. i 59
nedef_var. ... 63
nc_def_var, example.......................... 63
nc_def_var, typical use 3
nc_def_var_chunking 65
nc_def_var_deflate............................ 67
nc_def_var_endian............................ 70
nc_def_var_fletcher32......................... 69
nedef_vlen 57, 58
nedelatt........... 114
nc_del_att, example......................... 114
nceenddef 23
nc_enddef, examplel 23
nc_enddef, typical use......................... 3
nc_get_att, typical use 4,5
nce_get_att_type......... L 110
nc_get_att_ type, example 110
nc_get_attname, typical use.................... 5

nc_get_var, typical use............. 4,5

NetCDF C Interface Guide

nc_get_var_ type............ 89
nc_get_var_ type, example.................... 89
nce_get_varl_type............... 87
nc_get_varl_ type, example................... 87
nc_get_vara_ type............. 90
nc_get_vara_ type, example................... 90
nc_get_varm_type.............. 95
nc_get_varm_ type, example 95
nce_get_vars_ type........... 92
nc_get_vars_ type, example 92
nceinqg Family 27
nc_inq Family, example....................... 27
nc_ing, typical use L 5
nc_inq_att Family.......... 108
nc_ing-att Family, example.................. 108
nc_inq-att, typical use............. 5
nc_ing_compound............ ... 53
nc_ing_compound_fieldindex 54
nc_inq_compound_fieldname 54
nc_inq_compound_fieldoffset 55
nc_inq_compound_fieldtype................... 56
nc_inq-dim Family.............. 47
nc_inq-dim Family, example 47
nc_ing-dim, typical use........................ 5
ne_ing-dimid o 46
nc_inq_dimid, example 46
nc_inq_dimid, typical use...................... 4
ne_ing-dimids ... 38
ne_ing_format L 27
ne_ing_grpncid 41
ne_ing-_grp_parent 40
ne_ing-_grpname ... 39
nc_ing-_grpname_len.......................... 39
NC_ING_gIPS « v ottt et e e 36
nc_ing libvers i 13
nc_inq_libvers, example....................... 13
ne_ing-natts......... ... o Lol 27
ne_ing-ncid 35
neing ndims......... o 27
NC_INQNVATS © .ottt et e 27
NC_inQg_opaque. ...t 59
nc_ing_unlimdim., 27
nc_inq-unlimdims................ 49
NC_INQ_VAT ottt ettt e e 73
nc_ing_var, example............, 73
nc_inq-var, typical use 5
nc_ing-_var_chunking 66
nc_inq-var_deflate 68
nc_inq_var_endian 71
nc_inq_var_fletcher32......................... 70
ne_ingovarid. ... 72
nc_inq-varid, example............. 72
nc_inq_varid, typical use....................... 4
neing_varids. 37
nc_insert_compound 52
NCMPIIO. ..o 17
NC_MPIPOSIX 17
NC.NETCDF4 ... 21

Chapter 8: Index

NC_NOCLOBBER.................... 13, 15, 17
NC.NOWRITE....................... 19, 20, 21
TG0} o< & 19
nc_open, example............ 19
TIC_OPEIN_PAT .« ettt te et et e e et 21
nc_put_att, typical use......... 3,6
nce_put_att_ type.........l 105
nc_put_att_ type, example................... 105
nc_put_var, typical use 3
nc_put_var_ type o oL T
nc_put_var_ type, example.................... 7
nc_put_varl_type 74
nc_put_varl_ type, example................... 74
nc_put_vara_ type oL 78
nc_put_vara_ type, example................... 78
nc_put_varme_ type............. i 83
nc_put_varm_ type, example.................. 83
nc_put_vars_ type............ 81
nc_put_vars_ type, example................... 81
neredef. 22
nc_redef, example.......... oo 22
nc_redef, typical use 6
nc_rename_att......... ... oL i 113
nc_rename_att, example..................... 113
nce_rename dim.......... 48
nc_rename_dim, example 48
NC_TENAME_VAT . . o e eteteteeeeeeeeeaeaennn. 100
nc_rename_var, example..................... 100
nc_set_default_format 32
nc_set_default_format, example 32
neset fAll ..o o 31
nc_set_fill, example L 31
NCSHARE ... 6, 13, 15
NC_SHARE, and buffering 3
NC_SHARE, innc__open..................... 20
NC_SHARE, innc_open...................... 19
NC_SEIeITOr 12
nc_strerror, example 12
nc_strerror, introduction. 7
TIC_SYIIC + ve v et e e e e e 28
nc_sync, example 28
NC_VAI _PAT_ACCESS . « vt v veeveieeeeenn. 101
nc_var_par_access, example.................. 101
NC.WRITE..................... ... 19, 20, 21
ncid.o 108
netCDF library version....................... 13
netedf-3 error codes............. L. 125
netcdf-4 error codes............. L 127

@)

opaque type 59

P

parallel access 10
parallel example 10

Z

zero byte. ... 98

131
R
reading attributes........................... 110
reading entire variable 0 L 89
reading netCDF dataset with known names. 4
reading netCDF dataset with unknown names. .. 5
reading single value............... 87
renaming attributes.............. 113
renaming variable.......... o oL 100
S
single value, reading 87
subsampled array, writing 81
T
templates, code............. . 3
U
user defined types............. 51
\Va
variable length array type, overview........... 51
variable length arrays 56
variable, renaming oL 100
variable, writing entire 7
variables, adding................ 6
variables, chunking.............. 65
variables, creating 63
variables, endian............... 70
variables, fletcher32.......................... 69
variables, getting name.................... ... 73
variables, inquiring about 72
variables, number of 27
variables, setting deflate...................... 67
varid. ... 108
version of netCDF, discovering................ 13
version, format L 27
VLEN .. 56
VLEN, defining 57, 58
\%\%
WTIte €ITOTS. ..o vt 7
write fill mode, setting 31
writing array section................... 78
writing attributes............ o oLl 105
writing character-string data.................. 98
writing entire variable................ ... 0. T
writing mapped array 83
writing mapped array section................. 95
writing single value 74
writing subsampled array..................... 81
X
XEYPOP -« oot 108

132 NetCDF C Interface Guide

	Use of the NetCDF Library
	Creating a NetCDF Dataset
	Reading a NetCDF Dataset with Known Names
	Reading a netCDF Dataset with Unknown Names
	Adding New Dimensions, Variables, Attributes
	Error Handling
	Compiling and Linking with the NetCDF Library

	Datasets
	NetCDF Library Interface Descriptions
	Parallel Access for NetCDF Files
	Get error message corresponding to error status: nc_strerror
	Get netCDF library version: nc_inq_libvers
	Create a NetCDF Dataset: nc_create
	Create a NetCDF Dataset With Performance Options: nc__create
	Create a NetCDF Dataset With Performance Options: nc_create_par
	Open a NetCDF Dataset for Access: nc_open
	Open a NetCDF Dataset for Access with Performance Tuning: nc__open
	Open a NetCDF Dataset for Parallel Access
	Put Open NetCDF Dataset into Define Mode: nc_redef
	Leave Define Mode: nc_enddef
	Leave Define Mode with Performance Tuning: nc__enddef
	Close an Open NetCDF Dataset: nc_close
	Inquire about an Open NetCDF Dataset: nc_inq Family
	Synchronize an Open NetCDF Dataset to Disk: nc_sync
	Back Out of Recent Definitions: nc_abort
	Set Fill Mode for Writes: nc_set_fill
	Set Default Creation Format: nc_set_default_format

	Groups
	Find a Group ID: nc_inq_ncid
	Get a List of Groups in a Group: nc_inq_grps
	Find all the Variables in a Group: nc_inq_varids
	Find all Dimensions Visible in a Group: nc_inq_dimids
	Find the Length of a Group's Name: nc_inq_grpname_len
	Find a Group's Name: nc_inq_grpname
	Find a Group's Parent: nc_inq_grp_parent
	Find a Group's ncid: nc_inq_grp_ncid
	Create a New Group: nc_def_grp

	Dimensions
	Dimensions Introduction
	Create a Dimension: nc_def_dim
	Get a Dimension ID from Its Name: nc_inq_dimid
	Inquire about a Dimension: nc_inq_dim Family
	Rename a Dimension: nc_rename_dim
	Find All Unlimited Dimension IDs: nc_inq_unlimdims

	User Defined Data Types
	Compound Types Introduction
	Creating a Compound Type: nc_def_compound
	Inserting a Field into a Compound Type: nc_insert_compound
	Learn About a Compound Type: nc_inq_compound
	Find the Name of a Field in a Compound Type: nc_inq_compound_fieldname
	Get the FieldID of a Compound Type Field: nc_inq_compound_fieldindex
	Get the Offset of a Field: nc_inq_compound_fieldoffset
	Find the Type of a Field: nc_inq_compound_fieldtype
	Variable Length Array Introduction
	Define a Variable Length Array (VLEN): nc_def_vlen
	Learning about a Variable Length Array (VLEN) Type: nc_inq_vlen
	Opaque Type Introduction
	Creating Opaque Types: nc_def_opaque
	Learn About an Opaque Type: nc_inq_opaque
	Enum Type Introduction

	Variables
	Introduction
	Language Types Corresponding to netCDF external data types
	NetCDF-3 Classic and 64-Bit Offset Data Types
	NetCDF-4 Atomic Types
	Create a Variable: nc_def_var
	Define Chunking Parameters for a Variable: nc_def_var_chunking
	Learn About Chunking Parameters for a Variable: nc_inq_var_chunking
	Define Compression Parameters for a Variable: nc_def_var_deflate
	Learn About Deflate Parameters for a Variable: nc_inq_var_deflate
	Define Fletcher32 Parameters for a Variable: nc_def_var_fletcher32
	Learn About Fletcher32 Parameters for a Variable: nc_inq_var_fletcher32
	Define Endianness of a Variable: nc_def_var_endian
	Learn About Endian Parameters for a Variable: nc_inq_var_endian
	Get a Variable ID from Its Name: nc_inq_varid
	Get Information about a Variable from Its ID: nc_inq_var
	Write a Single Data Value: nc_put_var1_ type
	Write an Entire Variable: nc_put_var_ type
	Write an Array of Values: nc_put_vara_ type
	Write a Subsampled Array of Values: nc_put_vars_ type
	Write a Mapped Array of Values: nc_put_varm_ type
	Read a Single Data Value: nc_get_var1_ type
	Read an Entire Variable nc_get_var_ type
	Read an Array of Values: nc_get_vara_ type
	Read a Subsampled Array of Values: nc_get_vars_ type
	Read a Mapped Array of Values: nc_get_varm_ type
	Reading and Writing Character String Values
	Fill Values
	Rename a Variable: nc_rename_var
	Change between Collective and Independent Parallel Access: nc_var_par_access

	Attributes
	Introduction
	Create an Attribute: nc_put_att_ type
	Get Information about an Attribute: nc_inq_att Family
	Get Attribute's Values:nc_get_att_ type
	Copy Attribute from One NetCDF to Another: nc_copy_att
	Rename an Attribute: nc_rename_att
	Delete an Attribute: nc_del_att

	Summary of C Interface
	NetCDF 3 Transition Guide
	NetCDF-3 Error Codes
	NetCDF-4 Error Codes
	Index

