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地球惑星内部の回転（磁気）流体

• Fluid cores (liquid iron outer cores) 
in rocky planets
– cf. viscous/rocky mantles
– e.g.  our Earth 

• Outer envelopes (ionised/metallic hydrogen)
in gaseous planets
– e.g.  Jupiter 

• Hosting their large-scale magnetic fields

• MHD of rotating fluids
– as a blend in the classic subfield 
– G ”A” FD if you like..

(liquid iron)
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heavies as one goes inward toward the center and could then be the outcome of an accretion
process that tends to put heavy elements near the center of the planet in a way that creates a stable
compositional gradient, not because the heavies are more dense but because the ratio of the !ux
of accreting gas to the !ux of accreting solids (i.e., heavy elements) increases as time passes in
the planet formation epoch. This is the picture favored by Helled & Stevenson (2017). This must
not be confused with the atmospheric enrichment discussed above, which presumably arose from
even later accretion that was Rayleigh–Taylor unstable (i.e., the accretion of dense solids onto a
hydrogen-rich envelope).

Figure 4 suggests a currently favored picture for the interior of Jupiter. Note the lack of any
sharp boundaries in composition or material properties with depth.
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Figure 4
A current view of the interior of Jupiter. From the outside inward, we encounter ammonia cirrus at less than
one bar of pressure (the observable aspect of Jupiter in the visible), water clouds at tens of bars, and silicate
clouds presumed at tens of kilobars. At ∼3,000 km, less than 5% of the radius, the temperature is thousands
of degrees and the conductivity of molecular hydrogen is similar to that of salty water (1 S/m). Helium phase
separates as the hydrogen approaches metallization (pressure not known but plausibly 1–3 Mb). A diluted
core (heavy elements mixed nonuniformly with hydrogen and helium) is present deeper still.
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地球惑星内部の回転（磁気）流体

• Fluid cores (liquid iron outer cores) 
in rocky planets
– cf. viscous/rocky mantles
– e.g.  our Earth 

• Outer envelopes (ionised/metallic hydrogen)
in gaseous planets
– e.g.  Jupiter 

• Hosting their large-scale magnetic fields

• MHD of rotating fluids
– as a blend in the classic subfield 
– G ”A” FD if you like…



• MHD of rotating fluids in spherical shells (or plane layers)
– in the Boussinesq + MHD approximation (for constant diffusivities)

• （必要最低限の）方程式系から何がでてくるか、とその応用
– できるだけ（流体の）基礎方程式そのままに --> “DNS” の世界
– 古典本 e.g. Greenspan (1968), Chandrasekhar (1961), Roberts (1967)
– 文化/歴史の違いをご理解ください

• 主なこと： 対流、磁場形成、振動・波動、（乱流、etc）

基礎方程式

Governing equations II
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Governing equations I

The study of rotating magneto-convection are ... (e.g. Chandrasekahr).
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• The equation of motion: 

• Of interest:  
– 粘性項 Ek = Ta-1/2 ~ 10-15-10-9  << 1
– 慣性/移流項 Ro = Re Ek ~ 10-5  << 1

• leading to a geo-strophic balance 

– 空間スケール比 d = D/L ~ O(1) （cf.  atmosphere, ocean）

– 磁気流体性(?) Elsasser 数 L = B2/µrhW = Q Ek = O(1)
• leading to a magneto-strophic balance  (Acheson & Hide 1973) 
• Earth/planet-like と信じられる （cf.  sun/solar）

• 流体/物理的にいろいろ特有なことが起こる（だろう）
– 対流、磁場形成、振動・波動 で実際に見てみたい

問題設定

Governing equations II

or

@B

@t
+ (u ·r)B = B ·ru�r⇥ (⌘r⇥B) (6)

For constant di↵usivities

@B

@t
+ (u ·r)B = B ·ru+ ⌘r2B (7)

For gT 0 = gT 0r̂ and the basic temperature gradient rT0 =
dT0
dr , then

✓
@

@t
+ u ·r

◆
u+ 2⌦⇥ u = �r p0

⇢0
+ ↵gT 0r̂ +

1

⇢0
j ⇥B + ⌫r2u (8)

✓
@

@t
+ u ·r

◆
T 0 = �dT0

dr
ur + r2T 0

(9)

✓
@

@t
+ u ·r

◆
B = B ·ru+ ⌘r2B (10)

Governing equations I

The study of rotating magneto-convection are ... (e.g. Chandrasekahr).
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• Nicely introduces the subject
– more details in FDEPS lectures by Jones (2017), 

Christensen (2006)  

• Rotating magneto-convection 
(e.g. Chandrasekahr 1952-54; in lab, Nakagawa 1957-59)

– where a background magnetic field B0 is 
externally imposed

• cf. dynamos, where magnetic field B is self-excited 

– in plane layers where W ∥ B0 ∥ g

• The linear stability analyses reveal 
– the presence of magnetic field will modify 

rotating convection as Là O(1) at a 
sufficiently small Ek

– to get back ~nonrot. nonmag. behaviours (!) 

Convection

(Chap. 5; Chandrasekhar 1961)

hot

cold

(no W no B0; Ishiwatari et al. 1994)

Jakagawa Proc. Roy. Soc. A  vol, 249, plate 17

Fig u r e  3. Examples of streak photographs of the convective motion at the top surface o f  
mercury obtained for three different strengths of the magnetic fields; ( H  =  125 G, 

Qx = 9-46 ; (b) H =750 G, Qt = 3-49 x 102; (c) 3000 G, Qx =  5-76 x 103.

(Facing p* 142)
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Marginal curves for the stationary mode

Given � = 0, we find the critical Rayleigh number for the fundamental

mode n = 1
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The preferred wavenumber can be found ..

The optimal Elsesser number ⇤0,crit ..

Figure ** shows the curve as a function of KH for n = 1. ...

• Linear stability analyses 
– the linearised, governing equations: e.g. 

– with a reduced numbers of parameters

• To yield the Ra needed for the instability
– e.g. for the stationary mode: 

– increases when either rotation (Q = 0) or magnetic 
field (E à∞) alone is at play

– decreases in the presence of both as Q E = Là O(1) 
• to get back to ~nonrot. nonmag. behaviours (!)

Convection (cont’d)
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Linear stability analysis in a plane layer model II

We scale the variables as
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x
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d2/⌫
, e✓ =

✓
�0d

, and eB =
B
B0

, (15)

to give the dimensionless equations

@eu
@et

+
2

E
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Here Q E = ⇤0 is the Elsasser number. Hereafter we drop all tildes.
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Spherical convection
• Linear stability in spheres/spherical shells

– e.g. Fearn 1979; Jones+ 2003; Sakuraba 2002; 
also a review by Zhang & Schubert 2000

• Given a proper condition, as L0 à O(1)
– thermal instability, Racrit = O(E-4/3) à O(E-1)
– wavenumber, kcrit = O(E-1/3) à O(1)

• nonaxisymmetric modes preferred

– frequency,   wcrit = O(E-2/3) à O(1)

• Taylor (196*)

Rotating magnetoconvection 
applied by Malkus field Bf = B0 s

(Jones et al. 2003)

L0 = E-1/3

L0 = 3.2 E-1/3

Magnetoconvection in a rotating sphere: weak-¯eld case 791

0.1 1.0 10.0 100.0
0

2

4

6

R

l

Figure 1. The critical Rayleigh number as a function of the scaled Elsasser number ¶. Solid line,
Pr = 1, Pm = 0:5; dashed lines, Pr = 0:5, Pm = 1; stars, numerical results at E = 10¡ 6 , Pr = 1,
Pm = 0:5; triangles, numerical results at E = 10¡ 6 , Pr = 0:5, Pm = 1:0 corresponding to the
low-¶ branch; squares, numerical results at E = 10¡ 6 , Pr = 0:5, Pm = 1:0 corresponding to the
high-¶ branch.

along this branch. The squares correspond to the high-¶ branch, and again at large
¶ the numerical and asymptotic solutions begin to diverge as expected.

Further information comes from contour plots of the solutions. In ≠gure 2a, we
show an equatorial plane section of contours of radial velocity. Only half the plane
is shown; the other half can be deduced by rotation through º. The results from
≠gures 2 and 3 were calculated using the numerical, rather than the asymptotic,
results and the Ekman number has been ≠xed at 10¡6 in all the ≠gure 2 plots.
Contours of other quantities such as magnetic ≠eld or other velocity components
look very similar in this equatorial section. In ≠gure 2a the spiralling nature of the
convection pattern (Zhang 1992) is still evident, and at ¶ = 1 the magnetic ≠eld
is not greatly a¬ecting the pattern. In ≠gure 2b, the Elsasser number is increased
to ¶ = 100:5, close to the changeover value of ¶. The ≠rst e¬ect of the magnetic
≠eld is to straighten out the spiralling nature of the ®ow. The cells are also pushed
out from the axis towards the outer boundary. Rather surprisingly, the azimuthal
wavenumber has actually increased with increasing ¶, perhaps because with the
straighter cells, more can be ≠tted in. However, as ¶ is increased further to 101:5

in ≠gure 2c, the preferred azimuthal wavenumber drops dramatically, and the cells
spread out to occupy almost all the sphere. The Lorentz force is now strong enough
to impede radial motion, and the preferred wavenumber is reduced from the very
large values typical of non-magnetic convection down to an O(1) value. Note that
this transition happens when ¤ π E1=3 i.e. at comparatively weak ≠eld strength; it
is not necessary to have a `strong’ ¤ π O(1) ≠eld to reduce the preferred azimuthal
wavenumber.

We now consider the e¬ect of varying the Prandtl number. This appears to have
a similar e¬ect to the non-magnetic case of paper I. In ≠gure 2d we show Pr = 10,

Proc. R. Soc. Lond. A (2003)

 on July 16, 2010rspa.royalsocietypublishing.orgDownloaded from 
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Spherical convection
• Linear stability in spheres/spherical shells

– e.g. Fearn 1979; Jones+ 2003; Sakuraba 2002; 
also a review by Zhang & Schubert 2000

• Given a proper condition, as L0 à O(1)
– thermal instability, Racrit = O(E-4/3) à O(E-1)
– wavenumber, kcrit = O(E-1/3) à O(1)

• nonaxisymmetric modes preferred

– frequency,   wcrit = O(E-2/3) à O(1)196*)

• The drop begins at L0 = O(E1/3)
– in delay for axial field Bz

Rotating magnetoconvection 
applied by uniform axial field Bz

(Sakuraba 2002)

4 CONVECTIVE MODES AT E ¼ 2" 10#6

4.1 Overview of Convective Modes

In this section, we look at an example of magnetoconvection calculated at E ¼ Em ¼
2" 10#6, q ¼ 1 and ! ¼ 0 with the no-slip and heat-flux boundary conditions. This
example is suitable for introducing an abundant variety of convective modes. The
lack of the inner core (! ¼ 0) makes the convective structure simple and easy to under-
stand because there is no boundary layer originating from the inner core. The Elsasser
number is varied from 0:01 to 100.

Figure 1 shows the Rayleigh numbers (Rae and Rao) and the angular velocities (!e

and !o) of the convective modes of 0 $ m $ 5 as functions of !. The even mode
of m ¼ 24 is also shown because it is preferred when ! is less than about 0:2.

FIGURE 1 (a) The Rayleigh numbers of even (left) and odd (right) modes are calculated at
E ¼ Em ¼ 2" 10#6 and ! ¼ 0 with the no-slip and heat-flux boundary conditions, and shown as functions
of the Elsasser number. Solid lines represent the convective modes of 0 $ m $ 5, as indicated. The even mode
of m ¼ 24 is also shown. (b) Same as (a), but azimuthal phase velocities, !=m, are shown in place of Ra. Note
that ! is zero in the case of m ¼ 0.
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The other convective modes of m ! 30 are calculated but not shown here because
they are of no particular importance. It is readily found that the preferred convective
mode changes from the even mode of m ¼ 24 to the axisymmetric odd mode (m ¼ 0)
and finally to the even mode of m ¼ 1 with increasing !. Overall, the critical
Rayleigh number has two local minima at ! ¼ 2:21 and 14:1, and the latter is the abso-
lute minimum. We can see that the Elsasser number giving a local minimum of Ra also
gives a local minimum of !.

In Fig. 1, we can find that a curve of Ra (or !) does not smoothly vary as a function of
the Elsasser number. In the case of the even mode of m ¼ 1, for example, there are four
isolated branches, as indicated by the thick lines in Fig. 2. The convective modes
belonging to the same isolated branch have characteristics in common. In this paper,
these four branches are denoted by a geostrophic mode (G mode), a polar
convective mode (P mode), a magneto-geostrophic mode (E mode) and a slow magne-
tostrophic mode (S mode), as indicated in Fig. 2. In addition to them, it is better
to introduce a fast magnetostrophic mode (F mode) between the E and S modes.
The F mode can be interpreted as a continuation of the magneto-geostrophic mode
to a larger Elsasser number. In this paper, the E mode denotes the convective state
in which Ra and ! are significantly lowered just after the mode change from the P
mode, while both Ra and ! increase with the increase of ! in the F mode.

We can also find isolated branches in the odd mode (Fig. 1). In contrast to the even
mode, there are only two distinct groups characterizing the neutral curves. They
are essentially the same as the geostrophic (G) and the polar-convective (P) modes.
The transition from the G to P modes takes place at ! ’ 0:2 for all the azimuthal
wavenumbers except for m ¼ 0. The axisymmetric odd mode can be considered as a
polar-convective mode.

FIGURE 2 (a) A thick line represents the Rayleigh number of the even mode of m ¼ 1 as a function of !,
which is also shown in Fig. 1a. Thin lines are the extensions of the thick line obtained from seeking the second
largest (or higher-order) eigenvalue of the governing equations. Solid circles indicate the points where the
transition of the convective mode occurs. Vertical broken lines divide the convective modes into five groups
defined in this paper. (b) The corresponding phase velocity is shown.

MAGNETOCONVECTION IN ROTATING SPHERES 299

for m = 1

m

to the difference of temperature between the northern and southern hemispheres, which
requires an axial northward pressure force as a counter force. Accordingly, the pressure
perturbation is negative (positive) in the northern (southern) hemisphere. Note that it
is physically possible to change the direction of the meridional circulation by making
the signs of all the dependent variables opposite.

FIGURE 5 The velocity, electric current, magnetic field, pressure and temperature are illustrated on a
meridional plane in the case of the axisymmetric odd P mode calculated at E ¼ Em ¼ 2" 10#6, ! ¼ 0 and
! ¼ 2:05 with the heat-flux boundary condition. The radial and axial components of a vector field are
represented by arrows, while the other quantities are represented by contours, with solid lines denoting
positive values. The contour interval (cont. int.) and the maximum amplitude of arrows (max.) are indicated
in the figure.

MAGNETOCONVECTION IN ROTATING SPHERES 303
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Busse’s annulus model

• Useful to analyse key properties of rotating
spherical convection (handy..)

• Settings (Busse 1970; MHD ver. in 1976) :
– sloping boundaries (with a small angle c) 

uz = ± c ux at     z = ± L/2
to give a topographic b = -2W d (ln H)/dx

– almost independent on z (“QG”)
– W ⊥ g ⊥ B0 (and/or g ∥ B0 )

• To give a reduced set of linearised equations (dimensionless): 

In Busse’s annulus model II

Using a streamfunction we can write u ⇠ r⇥  (x, y, t)ẑ. Further, we

assume the magnetic field where |Bx|, |By| � |Bz|, and represent

B ⇠ B0êy +r⇥ g(x, y, t)ẑ. The vorticity and the current are given by

⇠z = ��2 and Jz = �
1
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�2g, respectively, with �2 = @2
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With u ⇠ r⇥  (x, y, t)êz and B ⇠ B0êy +r⇥ g(x, y, t)êz, the
dimensionless equations are
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b* = 4

Q = B
P = B

In Busse’s annulus model III

With u ⇠ r⇥  (x, y, t)êz and B ⇠ B0êy +r⇥ g(x, y, t)êz, the
dimensionless equations are the linearlised dimensionless equations are
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Busse‘s annulus model (cont‘d)

• The key properties of spherical convection 
reproduced by the annulus model 

• where the geometrical effect is described by b = -
(1/2W) dH/dx  &  W ⊥ B0 ⊥ g

• The marginal curve comprises distinct   
modes, depending on the regimes

– thermal Rossby modes (Busse 1970) for small L0

– for L0≥ O(E1/3)  
slow magnetic Rossby modes (Pm/Pr >> 1)
or another slow diffusive modes (Pm/Pr << 1)

• The L0 = O(1) regime is well characterised
by a balance amongst the Lorentz,  
buoyancy, (p-grad,) & Coriolis forces 
– with no viscous roles (cf. the rotating conv)
– the magnetostrophic/MAC balance
– *)
– through the three properties: thermal 

instability, length-scale, time-scale
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3. Numerical model

3.1. Model equations

We numerically model convection and magnetic field genera-
tion in a rotating spherical shell filled with an electrically conduct-
ing and viscous Boussinesq fluid. The non-dimensional governing
equations for codensity C, velocity u, non-hydrostatic perturbation
P and magnetic field B are:

@C
@t
þ u "rC ¼ 1

Pr
r2C þ S; ð3Þ

E
@u
@t
þ u "ru

! "
¼ &2êz ' u&rP þ Ra0C

r
ro
þ Er2u

þ 1
Pm
ðr' BÞ ' B; ð4Þ

@B
@t
¼ r' ðu' BÞ þ 1

Pm
r2B; ð5Þ

r " u ¼ 0; r " B ¼ 0: ð6Þ

Here the codensity is defined as C ¼ qðaT 0 þ ann0Þ, where T 0 stands
for the temperature deviation from an adiabatic reference state, n0

the deviation of the compositional concentration from its mean, a
the thermal expansivity, and an its compositional counterpart. We
have chosen the shell thickness D = ro & ri as a length scale, the
viscous diffusion time D2/m as a time scale, and (ql0k X)1/2 as a
magnetic scale, with ri and ro being the inner and outer core radii,
respectively. Codensity is scaled by Dbo in most cases and by Dbi

only in cases of zero codensity flux through the outer boundary,
referred to as compositional buoyancy sources (see below). Here
bo = &@C(ro)/@r and bi = &@C(ri)/@r are, respectively, the radial
codensity gradients at the outer and inner boundaries, which are
time-averaged in a quasi-steady convective state. The modified
pressure P also accounts for centrifugal forces due to the system
rotation rate X. The term S on the right hand side of Eq. (3) is a
dimensionless homogeneous buoyancy source/sink term.

Non-dimensional control parameters are the Ekman number
E = m/(XD2), the Prandtl number Pr = m/j, the magnetic Prandtl
number Pm = m/k, the modified Rayleigh number Ra0 ¼ goD2b=
ðqmXÞ where b is either bo or bi (see above), and the aspect ratio
g = ri/ro. Here, j is the codensity diffusivity and go is the reference

gravity at ro. We assume that gravity increases linearly with radius.
In the simulations presented below we vary the Rayleigh number
but keep the other four dimensionless parameters fixed at
E = 10&4, Pr = 1, Pm = 3, and g = 0.35. We assume rigid flow bound-
ary conditions and match the magnetic field to a potential field at
the interface to an electrically insulating inner core and an insulat-
ing outer domain r P ro.

We explore cases where the convection is driven by volumetric
internal sources (hereafter referred to IS), bottom sources (BS), a
combination of both (IBS), or compositional sources (CS). We chose
positive S in Eq. (3) for IS and IBS cases, S = 0 for BS cases, and neg-
ative S for CS cases. The ratio of internal to bottom sources is quan-
tified by the ratio FBS of the total codensity flux through the inner
and outer boundaries, respectively. A value of FBS = 1 corresponds
to a purely bottom source case while FBS = 0 corresponds to a
purely internal source simulation and FBS =1 to a compositional
source case. Volumetric source cases use a zero flux condition at
the inner boundary to rule out bottom source but explore a con-
stant codensity (C) as well as a constant homogeneous codensity
flux condition (F) at the outer boundary. We refer to these cases
as IS-C and IS-F in the following. For the bottom source cases we
explore both outer boundary conditions in combination with a
fixed codensity condition at ri, the cases BS-CC and BS-CF. In addi-
tion we also model the case BS-FF with flux conditions at both
boundaries to explore the impact of varying the condition at ri. In
the mixed source simulations we model two combinations with
fixed inner boundary codensity and either fixed codensity (IBS-
CC) or fixed flux (IBS-CF) on the outer boundary. In the conductive
state, the ratio of bottom source to internal source is FBS = 0.034.
Note that the ratio FBS for supercritical cases is not fixed in the
IBS-CC model but is determined by the convection dynamics and
increases with the Rayleigh number. We hence add an IBS setup
to evaluate the influence of the boundary condition with similar
values of FBS and Ra0=Ra0crit (referred to IBS-CF0, see Section 4.1).
For the compositional buoyancy source cases we set zero codensity
flux through the outer boundary, and we explore the impact of the
inner boundary conditions in CS-CF and CS-FF cases. This amounts
to a total of 10 different setups which are listed in Table 1, and se-
ven of which are explored with various values of Ra0.

Next we discuss the geophysical relevance of the various types
of boundary conditions and their combinations. Models with a

Fig. 1. Critical Rayleigh number vs. horizontal wavenumber KH in a plane layer with (a) fixed temperature boundary conditions [Eq. (2), after Chandrasekhar (1961)] and (b)
fixed heat flux conditions [Eq. (1)], at several values of K0 and E: at K0 = 0 and E ?1 (solid line), at K0 = 0,2E1/3,2 for E = 10&4 (dashed lines) and E = 10&8 (dashed-dotted
lines).
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Some remarks
• The effects are expected for 

– sufficiently rapid rotation, E << 1
• no larger than E = 10-4 in linear analyses

– a proper magnetic field B0 (direction & morphology)
– a proper condition: e.g.

• when a fixed heat-flux boundary condition rules,     
the magnetostrophic
properties will become
more relevant 
(e.g. Sakuraba 2002; Hori+ 2012, 2014)

* The properties (thermal instability, length-scale, time-
scale) are the hints for identifying the 
magnetostrophy, but not proven in nonlinear 
dynamo systems! 

fixed temp b.c.

Influence of boundary conditions

The above case is the (mathemtically) simplest case. The detailed

behaviours can be modified for given settings such as no-slip conditions.

However their influence on the linear problem is minor overall.

An exception is the thermal condition. Assuming prescribed heat-flux

conditions in the plane layer model yields the marginal curve

Rac =
⇡2

8


(K2

H
+ ⇡2)2 + ⇡Q+

4⇡2

E2

K2
H
+ ⇡2

(K2
H
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�
(34)

Notice the only change from (32) is found in the pre-factor. The e↵ect will

be pretty minor in the rotating case (Q = ⇤0 = 0), for example, but

become evident when ⇤0 approaches the order of unity in the rapidly

rotating regime (su�ciently high E).
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3.1. Model equations

We numerically model convection and magnetic field genera-
tion in a rotating spherical shell filled with an electrically conduct-
ing and viscous Boussinesq fluid. The non-dimensional governing
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Here the codensity is defined as C ¼ qðaT 0 þ ann0Þ, where T 0 stands
for the temperature deviation from an adiabatic reference state, n0

the deviation of the compositional concentration from its mean, a
the thermal expansivity, and an its compositional counterpart. We
have chosen the shell thickness D = ro & ri as a length scale, the
viscous diffusion time D2/m as a time scale, and (ql0k X)1/2 as a
magnetic scale, with ri and ro being the inner and outer core radii,
respectively. Codensity is scaled by Dbo in most cases and by Dbi

only in cases of zero codensity flux through the outer boundary,
referred to as compositional buoyancy sources (see below). Here
bo = &@C(ro)/@r and bi = &@C(ri)/@r are, respectively, the radial
codensity gradients at the outer and inner boundaries, which are
time-averaged in a quasi-steady convective state. The modified
pressure P also accounts for centrifugal forces due to the system
rotation rate X. The term S on the right hand side of Eq. (3) is a
dimensionless homogeneous buoyancy source/sink term.

Non-dimensional control parameters are the Ekman number
E = m/(XD2), the Prandtl number Pr = m/j, the magnetic Prandtl
number Pm = m/k, the modified Rayleigh number Ra0 ¼ goD2b=
ðqmXÞ where b is either bo or bi (see above), and the aspect ratio
g = ri/ro. Here, j is the codensity diffusivity and go is the reference

gravity at ro. We assume that gravity increases linearly with radius.
In the simulations presented below we vary the Rayleigh number
but keep the other four dimensionless parameters fixed at
E = 10&4, Pr = 1, Pm = 3, and g = 0.35. We assume rigid flow bound-
ary conditions and match the magnetic field to a potential field at
the interface to an electrically insulating inner core and an insulat-
ing outer domain r P ro.

We explore cases where the convection is driven by volumetric
internal sources (hereafter referred to IS), bottom sources (BS), a
combination of both (IBS), or compositional sources (CS). We chose
positive S in Eq. (3) for IS and IBS cases, S = 0 for BS cases, and neg-
ative S for CS cases. The ratio of internal to bottom sources is quan-
tified by the ratio FBS of the total codensity flux through the inner
and outer boundaries, respectively. A value of FBS = 1 corresponds
to a purely bottom source case while FBS = 0 corresponds to a
purely internal source simulation and FBS =1 to a compositional
source case. Volumetric source cases use a zero flux condition at
the inner boundary to rule out bottom source but explore a con-
stant codensity (C) as well as a constant homogeneous codensity
flux condition (F) at the outer boundary. We refer to these cases
as IS-C and IS-F in the following. For the bottom source cases we
explore both outer boundary conditions in combination with a
fixed codensity condition at ri, the cases BS-CC and BS-CF. In addi-
tion we also model the case BS-FF with flux conditions at both
boundaries to explore the impact of varying the condition at ri. In
the mixed source simulations we model two combinations with
fixed inner boundary codensity and either fixed codensity (IBS-
CC) or fixed flux (IBS-CF) on the outer boundary. In the conductive
state, the ratio of bottom source to internal source is FBS = 0.034.
Note that the ratio FBS for supercritical cases is not fixed in the
IBS-CC model but is determined by the convection dynamics and
increases with the Rayleigh number. We hence add an IBS setup
to evaluate the influence of the boundary condition with similar
values of FBS and Ra0=Ra0crit (referred to IBS-CF0, see Section 4.1).
For the compositional buoyancy source cases we set zero codensity
flux through the outer boundary, and we explore the impact of the
inner boundary conditions in CS-CF and CS-FF cases. This amounts
to a total of 10 different setups which are listed in Table 1, and se-
ven of which are explored with various values of Ra0.

Next we discuss the geophysical relevance of the various types
of boundary conditions and their combinations. Models with a

Fig. 1. Critical Rayleigh number vs. horizontal wavenumber KH in a plane layer with (a) fixed temperature boundary conditions [Eq. (2), after Chandrasekhar (1961)] and (b)
fixed heat flux conditions [Eq. (1)], at several values of K0 and E: at K0 = 0 and E ?1 (solid line), at K0 = 0,2E1/3,2 for E = 10&4 (dashed lines) and E = 10&8 (dashed-dotted
lines).
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In plane layers where W ∥ B0 ∥ g
(KH, Wicht & Christensen, 2012)

fixed flux b.c.



Some remarks (cont’d)

• The problem may be regarded as a 
doubly diffusive system

• e.g. In the linear Busse-annulus model 
– ~Q KH

2/Pm  as  -RaS/Pc
– e.g. oscillatory regime (q = Pm/Pr > 1)  as a 

diffusive regime (Le = Pc/Pr > 1; RaT > 0, RaS < 0)
– finger regime (Le > 1; RaT < 0, RaS > 0)  vs. Pm/Pr < 1??

– identical when W ∥ B0 ⊥ g (after Takehiro-san;     
in spheres, Sakuraba 2002)

• Rotating double-diffusive convection also 
yields the Ra-drop if -RaS/h* = O(1)  
– cf.  Elsasser number L ~ Q/h*
– but not when -RaS/h* = O(E1/3) 
– in plane layers (Pearlstein 1981), 

in Busse annulus (Simitev 2011)?   

ver.1.2 Jan 24, 2015 KH

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.01  0.1  1  10  100

R
a c

rit
 η

*-4
/3

Racrittempeta1000000DDpc100..dat

η*=106, Pc=100.: RaS,crit
Pc=100.:  RaT,crit

thermal magneto-Rossby
MC-Rossby

MC-Rossby (kcut-off)
nonmagnetic Rossby

 0
 0.2
 0.4
 0.6
 0.8

 1

k c
rit

 η
*-1

/3

Racrittempeta1000000DDpc100..dat

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

 0.01  0.1  1  10  100

ω
cr

it η
*-2

/3

[-RaT, -RaS]/η*

Racrittempeta1000000DDpc100..dat

Fig. 5: The lowest critical values of thermal (compositional) Rayleigh number, the critical
wavenumber and frequency, as a function of the other Rayleigh number, −RaS/η∗ (−RaT /η∗),
in a diffusive (finger) regime. The convection becomes destabilised as −RaS/η∗ (−RaT /η∗) is
increased to O(1). Numerical and **analytical (INCORRECT)** results are plotted by symbols
and lines, respectively. At η∗ = 106.
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Doubly-diffusive vs. magneto- convection 
at 1/h* = 106 (KH & Simitev, unpublished)

magnetostrophic
(curves)

doubly diffusive
(symbols)

symbols : double diffusive
lines： magnetoconvection



Dynamos

• Rotating magnetoconvection studies have suggested
– as magnetic field B is strengthened to L = O(1), 

the thermal instability Racrit drops
• as well as the wavenumber kcrit , and wave frequency wcrit

• This led to a speculation of dynamos in the regime: (as in Earth): 
‘strong-field’ dynamos
– or magnetostrophic dynamos, etc. 
– vs. ‘weak-field’ dynamos in the 

rotating/viscous regime

(after Roberts 1978; KH & Wicht 2012;
also Dormy 2016, 2025)

Racmag
= O(E-1)

Radmag

Rmd
mag

subcritical 
dynamo

Ra

Flow vigor
U or Rm

Rac
= O(E-4/3)

Field strength
B2 or L

RaRad

Rmd

L=O(1)

strong field dynamo

weak field dynamoL=O(E)



Do magnetostrophic dynamos exist at all?

• Long controversial whether the existence could be proven
– some indications in plane layer dynamos (e.g. Stellmach & Hansen 2004) 

– what about in spherical dynamos
• negative? (e.g. Soderlund+ 2012; Roberts & King 2013) 
• positive? (e.g. Sreenivasan & Jones 2011)

• To explore
– the key signatures as predicted by rotating magneto-convectionI

• length scale:   spatial structures, scaling laws
• thermal instability: heat transfer, subcritical/strong-/weak-field dynamos
• time scale:  waves/oscillationses & Tobias 2014)

– the force balances
• base on the solutions/scaling  (recall: the field is self-generated)
• identifying the regime (e.g. Yadav+ 2016, Dormy 2017), better diagnosing (ongoing)



• Enlarged convective structures identified
– inside the TC (e.g. Sreenivasan & Jones 2005)

• cf. in plane layers (e.g. Rotvig & Jones 2002;           
Stellmach & Hansen 2004)

• cf. in lab (e.g. King & Aurnou 2015)

– outside the TC (e.g. Sakuraba & Roberts 2009; 
Hori+ 2010; Takahashi & Shimizu 2012)

• when generated magnetic fields were dipolar
• clearer when a fixed heat-flux b.c. ruled?

– Note: the mean wavenumber cannot be the 
right measure here

• Characterising length scales feeds into 
scaling laws (later on?)

– several peaks; the dominant modes 
determines the structure  
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Subcritical, strong- and weak-field dynamos

• Subcritical branches, as well as two 
branches (bistability), observed 
– quite deep in some cases: Ra ≳ 0.25 Radyn

– but none for Ra < Raconv (cf. plane layer) 

• The subcritical/upper branch: 
– L ≳ 1  with dipolar fields only
– weaker flow vigor (Rm > 100 ~ Rmdyn

mag)
& larger convective structures (1 < m < 4)

– ‘strong-field’ dynamos?

• The lower branch:
– L < 1 with non-dipolar fields only 
– flow vigor (Rm > 200 ~ Rmdyn) &    

convective structures (4 < m < 8) 
similar to the nonmagnetic convection

– ‘weak-field’ dynamos?
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• On the weak-field branch
– only multi-polar fields

– L < 1 

• On the strong-field branch
– only dipole-dominated fields

– L ≳ 1 
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Termination of planetary dynamos
• During a planetary evolution, 

subcritical dynamo action can 
– maintain a strong field until its termination
– complete the shut-down

• Dynamo action cannot simply restart,   
once buoyancy anomaly and magnetic  
field become lower than its critical points

• The scenario worked in early Mars? 
(e.g. Kuang+ 2008) 

– operated likely between 4.5 – 4 Ga  
(e.g. Acuna+ 1999; Weiss+ 2002)

– died quickly, within 20Ma?      
(Lillis+ 2008)
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Termination of planetary dynamos
• During a planetary evolution, 

subcritical dynamo action can 
– maintain a strong field until its termination
– complete the shut-down

• Dynamo action cannot simply restart,   
once buoyancy anomaly and magnetic  
field become lower than its critical points

• The scenario worked in early Mars?         
(e.g. Kuang+ 2008) 

– operated likely between 4.5 – 4 Ga  
(e.g. Acuna+ 1999; Weiss+ 2002)

– died quickly, within 20Ma?      
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• A magnetostrophic balance will lead to 
– nonaxisymmetric modes:  e.g. slow magnetic 

Rossby waves
– axisymmetric modes:  torsional oscillations

• The axisymmetric modes identified
(e.g. Wicht & Christensen 2008; Teed et al. 2014):
– perturbations about the Taylor state
– wave equation for z’(s,t) = u’f/s

– propagate along a poloidal field 
component  !""

– (details in part 3)
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• Nonaxisymmetric, slow modes identified:
– retrograde drifts commonly seen in    

early numerical dynamos 
– their speeds accounted for by total   

phase speeds of wave and mean flow 
advection, (wMR + wadv)/m, where

– can propagate along a toroidal 
field component  #$'

• The waveforms illustrate
– no wave trains 
– but isolated, sharp crests
– (details in part 2)

• steepening

at E = 10-5, Pm/Pr = 5, Ra/Rac = 8 & L ~ 22
(KH, Jones & Teed, 2015)
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The fast modes !̂+ essentially recall the hydrodynamic Rossby waves,242

which travel prograde with the frequency !̂R about the advection part. They243

arise from a balance between the first two terms of (19), dh⇠zi/dt and ⌅C .244

By contrast, the slow modes !̂� are a unique solution of rotating MHD,245

sometimes called MR waves or MC-Rossby waves. Their properties become246
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and the observed frequency will be the sum of !̂MR and the advection fre-249

quency !adv. This implies a much lower frequency and a retrograde propa-250

gation unless the advective flow is large and eastward. The corresponding251

phase speed is given VMR = !̂MR/m, and similarly for the Rossby and Alfvén252

phase speeds. The magnetic Rossby speed goes up as the wavenumber m in-253

creases or the radius s decreases. A balance between the last two terms, ⌅C254

and ⌅L, is vital for this mode, indicating that the time variations arise from255

the induction equation while the momentum equation is almost in balance.256
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• Nonaxisymmetric, slow modes identified:
– retrograde drifts commonly seen in    

early numerical dynamos 
– their speeds accounted for by total   

phase speeds of wave and mean flow 
advection, (wMR + wadv)/m, where

– can propagate along a toroidal 
field component  #$'

• The waveforms illustrate
– no wave trains 
– but isolated, sharp crests
– (details in part 2)

• steepening

Time scales (cont’d)

The fast modes !̂+ essentially recall the hydrodynamic Rossby waves,242

which travel prograde with the frequency !̂R about the advection part. They243

arise from a balance between the first two terms of (19), dh⇠zi/dt and ⌅C .244

By contrast, the slow modes !̂� are a unique solution of rotating MHD,245

sometimes called MR waves or MC-Rossby waves. Their properties become246

evident when taking the limit !̂2

M
/!̂

2

R
⌧ 1 on the slow mode, !̂�, to obtain247

(using the binomial approximation)248

!̂MR = �
!̂
2

M

!̂R

= �
m

3
hfB2

�
i(r2

o
� s

2)

2s4
, (22)

and the observed frequency will be the sum of !̂MR and the advection fre-249

quency !adv. This implies a much lower frequency and a retrograde propa-250

gation unless the advective flow is large and eastward. The corresponding251

phase speed is given VMR = !̂MR/m, and similarly for the Rossby and Alfvén252

phase speeds. The magnetic Rossby speed goes up as the wavenumber m in-253

creases or the radius s decreases. A balance between the last two terms, ⌅C254

and ⌅L, is vital for this mode, indicating that the time variations arise from255

the induction equation while the momentum equation is almost in balance.256

These slow waves will be distinguished from Alfvén or Rossby (fast MR)257

modes in terms of dispersion relations ! = !(m), phase velocity !/m, and258

vorticity balances.259

At fixed s and hence hfB2

�
i, all dispersion relations (20) are comprised of260

MR branches at lower wavenumber m and Alfvén branches at higher m. The261

transition will occur when !̂
2

M
/!̂

2

R
⇡ 1, i.e. m4

⇡ 2s6/(r2
o
� s

2)2hfB2

�
i. We262

did not observe signals of Alfvén branches in our simulations, but it could263

be possible if faster or smaller-scale disturbances are provided, for instance,264

by more vigorous convection. Studies of equatorial atmospheric dynamics265

demonstrate an impressive ability to distinguish several wave modes through266

space-time spectra and theoretical dispersion relations (e.g. Kiladis et al.,267

2009).268

Our assumption of a short azimuthal length scale means terms involving269

fB� dominate over the terms involving the poloidal field, fBs and fBz. We spec-270

ulate that if these terms do become significant, the dispersion relation would271

become almost proportional to m. However, solving the linear equations in272

this case becomes di�cult. Applying the assumption ⇠
0
z
⇡ �

1

s

@

@�
hu

0
s
i helps to273

simplify our equation considerably. To pursue analytical solutions when all274

11

at E = 10-5, Pm/Pr = 5, Ra/Rac = 8 & L ~ 22
(KH, Jones & Teed, 2015)

z-mean radial velocity <us> 
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• Exemplifies the dominant balance 
between Coriolis and Lorentz 
terms in the axial vorticity eq.
– Reynolds term remains minor

• The Lorentz term XL expanded into 
the restoring force and  its residual,   
e.g.   

+ (other terms) ]

– the sum of the restoring and   
leading nonlinear terms tends  
to reproduce the waveforms

Force balances

VMC(m=5)+Vadv

Vadv=z

where J = ∇×B is the electric current in the present scaling. The individual163

terms of the equations are denoted and rewritten as164

ΞR = ⟨u ·∇ξz − ξ ·∇uz⟩ = ∇h · ⟨ξzu− uzξ⟩,

ΞC = −2Pm

E

〈
∂uz

∂z

〉
= −Pm

E

1

H
[uz]

+H
−H =

Pm

E

s[us(H) + us(−H)]

(r2o − s2)
,

ΞL =
Pm

E
⟨B ·∇Jz − J ·∇Bz⟩ =

Pm

E
∇h · ⟨JzB − BzJ⟩, (8)

ΞB =
Pm2Ra

Pr

1

s

∂⟨T ⟩
∂φ

,

ΞV = Pm

{
∇2

h⟨ξz⟩+
1

2H

[
∂ξz
∂z

]+H

−H

}
,

where ∇2
hf = 1

s
∂
∂ss

∂f
∂s +

1
s2

∂2f
∂φ2 and ∇h ·A = 1

s
∂
∂ssAs +

1
s

∂
∂φAφ for any vector165

field, A. The integral in ΞC is performed by using the sloping boundary166

conditions, uz = ∓uss/H at z = ±H. We assume ∇ · ξ = ∇ · J = 0 as well167

as the solenoidal conditions (4a,b).168

To seek perturbations about a background state, we split the velocity and169

magnetic fields into their mean and fluctuating parts. Furthermore, to focus170

on the background state given by the axisymmetric component, we further171

separate the mean parts into axisymmetric and non-axisymmetric parts, such172

that173

u = Ũ (s,φ, z) + u′(s,φ, z, t)

= Ũ (s, z) + Ũ
n
(s,φ, z) + ⟨u′⟩(s,φ, t) + u′a(s,φ, z, t)

(9)

B = B̃(s,φ, z) + b′(s,φ, z, t) = B̃(s, z) + B̃
n
(s,φ, z) + b′(s,φ, z, t) . (10)

The averaging operators and fluctuating parts appearing here are defined by174

Ã(s,φ, z) =
1

τ

∫ τ

0

A dt, A′(t, s,φ, z) = A− Ã , (11)

A(t, s, z) =
1

2π

∫ 2π

0

A dφ, An(t, s,φ, z) = A− A (12)

Substituting (10) into the Lorentz term, ΞL, we find its individual terms:175

ΞL =
Pm

E

[
⟨B̃ ·∇j′z⟩+ ⟨b′ ·∇j′z⟩

+ ⟨B̃
n
·∇j′z⟩+ ⟨B ·∇J̃z⟩ − ⟨J ·∇Bz⟩

]
.

(13)
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Chosen Lorentz terms

+

from ΞL can model the pattern of ΞC , or ⟨u′
s⟩. In Figure 11 we test this646

by taking a sum of the dominant restoring, ⟨ B̃φ

s
∂j′z
∂φ ⟩, and nonlinear, ⟨ b

′
φ

s
∂j′z
∂φ ⟩,647

terms. The selected terms reproduce some features including steepened crests648

and troughs. We hence speculate that, although the linear theory is essential649

for explaining its wave speeds, the nonlinear Lorentz term is important for650

creating the observed waveforms. This will help us to study the fundamentals651

of the nonlinear dynamics, for example, by adopting reduced models.652

3.6. Space-time analysis of surface magnetic field653

We now address the question whether MR waves could be detectable in654

geomagnetic data. The westward drift is analysed using the radial component655

of the geomagnetic field, which is inferred at the top of the core (e.g. Finlay et656

al., 2010). The QG theory, when no boundary layers are taken into account,657

suggests that the internal wave motions at given s can be seen at the top658

at latitude ≈ arc cos (s/ro) in each hemisphere. Therefore one may expect659

identification of MR waves in the secular variation if the flow is sufficiently660

two-dimensional. Note that the geostrophy varies with the Ekman number E661

and the background magnetic field, which can be quantified by the Elsasser662

number Λ.663

Figure 12 depicts plots for space-time analyses of the radial magnetic664

field Br observed at the outer boundary r = ro in model 6.5R2, in which665

low E and Λ ≈ 2 give a well-defined geostrophy. These are analogous to the666

plots shown of the internal fluid motions discussed in sec. 3.2. To focus on the667

secular variation, we remove the time-averaged field in the analysis presented668

below. Figures 12a and b show the time azimuthal sections of the residual669

field B′
r at latitudes 60

◦N and 39◦N in the northern hemisphere, respectively.670

Here white dashed and solid black lines indicate, respectively, the calculated671

ζ and ζ + ω̂MR/m for m = 9 at the corresponding cylindrical radius s: the672

speeds at s = 0.5ro (0.77ro) can be seen in Fig. 1c and d. The frequency673

- wavenumber spectra are shown in Figs. 12c and d, in which white dashed674

and black solid curves represent the advective dispersion relation, ζm, and675

the total dispersion relation, ζm+ ω̂−, at both radii s, respectively.676

The spectrum at 60◦N is dominated by signals ofm ≈ 9 and 12 and f < 0;677

prograde modes of f > 0 also look significant. The predicted wave speed for678

m = 9 can fit some magnetic drifts observed in the physical domain. At lower679

latitude 39◦N drift patterns seemingly get noisier. As |ζ| goes up and VMR680

does down as s increases to 0.7, see (Fig. 1c-d), so flow advection becomes681
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Run ’nm E5 Pm5 seg1’ ver.1.2 May 5, 2016 KH

Fig. 3: ⟨us⟩(s = Const.,φ, t), in the physical domain (left) and in the spectral domain (right).

At s = 0.5ro

(residual part)

At s = 0.766ro

(residual part)

Routines:
’tave tsphidata.pro’ ’tave tsphidata.pro’
’tsphidata tphiplot withVb.pro’ ’tsphidata fmplot nm.pro’

3

Run ’d E5 Pm5lf seg2-4’ ver.1.1 May 5, 2016 KH

Fig. 4: ⟨us⟩(s = Const.,φ, t), in the physical domain (left) and in the spectral domain (right).

At s = 0.5ro

(residual part)

At s = 0.766ro

(residual part)

Routines:
’tave tsphidata.pro’ ’tave tsphidata.pro’
’tsphidata tphiplot withVMC.pro’ ’tsphidata fmplot withVMCs.pro’
’tsphidata tphiplot withVb.pro’ ’tsphidata fmplot nm.pro’4

The respective nonmagnetic 
convection reveals
• much faster variations & smaller-

scale spatial structures
• more signals from prograde drifts 

(with respect to the mean flow)

The role of magnetic field

in hydro
<us’> at s=0.4ro

in a dynamo (axial dipole)
<us’> at s=0.4ro
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Magnetic secular variation

• Possibly linked to the westward drifts or its rapid dynamics
– the nonaxisymmetric part migrating on timescales of ≳300 yrs

• also for ~6 yr westward drift?  (Chuliat et al. 2015; Gillet, Gerick, et al. 2022) 

– flow advection? (Bullard et al. 1950) or wave propagation? (Hide 1966)
more likely their mixture
• the wave part could tell us more 

– e.g. toroidal field Bf of  ~ 12 mT ? at s=0.77ro  (Hori+ 2015)

Nonaxisymmetric part of Br at the top of the core
at 0 °N/S and 40°S (gufm1:  Finlay & Jackson 2003)

The Earth’s magnetic field is generated in the fluid core of the
Earth (radius a ¼ 3,485 km) by a ‘self-exciting dynamo’ mechan-
ism. This mechanism has sustained the field from decay over most
of the lifetime of the Earth, and convective motions associated with
the dynamomechanism are responsible for the ‘secular variation’, or
the slow changes in the magnetic field over timescales of decades to
centuries which are seen on the Earth’s surface.

Smooth images of the core field can be reliably constructed back
to the 16th century using data collected on land and sea3. As in
virtually any inverse problem, the problem of reconstructing the
core magnetic field from surface observation is formally non-
unique4,5, and therefore requires some prior information in its
solution; generally a quadratic smoothness criterion is implemented
on the magnetic field at the core surface, which therefore roughly
measures magnetic energy. Such a methodology is termed regular-
ization and is common to most inverse problems5,6. There is no
reason to suppose that any quadratic property of the field should
remain constant. However, both theory and numerical simulations
of the geodynamo support the view that on the decade-to-century
timescale the approximation of the core as a perfect electrical
conductor is a good one. Thus, Alfven’s celebrated frozen-flux
theorem will be obeyed to a high degree, and indeed numerical
estimates put the level of violation at a few per cent per century7,
whereas observationally there is no evidence that requires violation.
When faced with making images of the core field at different points
in time from sometimes vastly different data sets, an appealing
method would be one based on frozen-flux: such images would

visually have similar complexity in time, while conserving a physi-
cally relevant quantity.
Bondi and Gold8 first drew attention to a consequence of Alfven’s

theorem, namely that the ‘unsigned flux N’ over the entire core
surface Q:

N ¼
ð

Q
jBrjdQ

must be invariant with time. The field must also obey the condition:
ð

Q

BrdQ¼ 0

since there are nomonopoles allowed byMaxwell’s equations. These
two equations imply that the amount of positive flux (the ‘red’ flux
in Fig. 1), which we call Bþ

r ; and the amount of negative flux (the
‘blue’ flux), which we call B2

r ; must remain constant:
ð

Q

Bþ
r dQ¼

ð

Q

B2
r dQ¼N=2¼ constant

We can define the general radial core field Br in terms of the
spatially-varying intensities Bþ

r and B2
r as Br ¼ Bþ

r 2B2
r : The

problem is to reconstruct the two positive intensities Bþ
r and B2

r
from the surface data. For fixed total fluxes this is essentially a
problem of combinatorics which has received much attention9–11;
the answer to this problem, theMaximumEntropymethod, has had
considerable success in astronomy and medical physics fields and
this is the approach that I adopt here.
Properties of this method are well-known; it is frequently used in

radio-astronomy to reconstruct images with high dynamic ranges.
The results from certain dynamo simulations12 show that it is
possible for dynamo action to concentrate magnetic field into
localized flux lines or ‘ropes’ in which Br is strong and relatively
weak elsewhere; this is a scenario where conventional quadratic
regularization methods will produce poor images, because they bias
strong localizations heavily towards zero. A method based on
maximizing the entropy S of both Bþ

r and B2
r where:

SðxiÞ ¼
i

X
xi 2mi 2 xilogðxi=miÞ

and where x i is an intensity in either Bþ
r or B2

r with ‘default’ value
mi is much less likely to do this; indeed, synthetic tests on radial
magnetic fields from numerical dynamo models confirm this
property.
I apply the method to two high-quality data sets. The first is a

selection of Magsat data from 1980, the first three-component
magnetometry mission. The second is from the satellite Oersted,
which was launched in February 1999 and is still collecting data; the
selection of data is from December 1999–January 2000. The
representation of the core magnetic field is in the form of the
“spherical triangle tesselation”13 whereby the core is tessellated into
P ¼ 1,442 almost equally-spaced nodes and 2,880 spherical tri-
angles. The node structure is based on the subdivision of the regular
icosahedron14. Each of the P nodes specifies the core magnetic field
by two positive numbers bþi and b2i :Making the assumption that the
mantle is an insulator, a valid assumption considering the frequencies
present in the core spectrum, the forward problem is a convolution of
the core field with a known kernel13. This kernel, the equivalent of
the point-spread function in astronomical imaging, is very wide and
therefore the deconvolution problem is quite severe.

Figure 1 Comparison of the radial magnetic field for epochs 1980 and 2000 on Aitoff
equal-area projection. Red colours represent magnetic flux out of the core, while blue

colours represent magnetic flux entering the core; each colour bar represents an interval

of 100mT. The continental outlines are for orientation. The labels A–D and 1–5 define the

flux spots referred to in the text; the high-latitude spots are E and e. In calculating the

models the Magsat data are assigned errors of 10 nT, commensurate with previous

studies. The Oersted data have lower errors and are treated using the anisotropic error

model of Holme and Bloxham21; we use j ¼ 2.25 nT, and errors of 10 00 and 60 00 for the

two pointing angle errors w and x (ref. 22). The sensitivity of the data to the model is

computed using the analytic solutions to the Neumann problem for Laplace’s equation

and a numerical integration over the five or six triangles adjacent to a node that have non-

zero contribution to the sensitivity matrix13. The unsigned flux of the two models differs by

less than 0.5%.

Table 1 Model comparison

Model No. of data Misfit¼
ffiffiffiffiffiffiffiffiffiffiffi
x2=N

p
a S (mT)

.............................................................................................................................................................................

1980 1,600 (Z) 1.00 3.82 £ 1022 2873 £ 103

2000 3,684 (X,Y,Z) 1.00 2.50 £ 1022 2865 £ 103
.............................................................................................................................................................................

Data, misfit, trade-off parameter a and entropy S for the 1980 and 2000 models. X, Y, Z are the
north, east and down components of themagnetic field. A ‘default’ value ofmi ¼ 10 mT has been
used; this small value does not unduly penalize large-amplitude features.
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Br at the top of the core (Jackson 2003)
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both of which could conceivably be occur- 
ring at the surface of Earth's core. One 
possibility is that a westward equatorial jet 

magnitude of the original signal Brn but cap- 
tures 42% of the change observed at the core 
surface (11). Consequently, we are able to 
isolate new aspects of the f1eld evolution that 
were previously obscured. Rather than a stat- 
ic picture with small-amplitude features 
riding on top, the processed data of the resid- 
ual field reveal a dynamic f1eld morphology 
that evolves rapidly over the 400 years stud- 
ied (Fig. 1) (movie S3). In the equatorial 
region we observe a series of high-amplitude 
flux foci moving westward. Field changes are 
most obvious under the Atlantic hemisphere 
while less activity occurs under the Pacif1c 
hemisphere, suggesting some longitudinal 
modulation of the field or of the mechanism 
causing its motion (12, 13). 

We constructed time-longitude diagrams 
(14-1 of the residual f1eld every 2° of 
latitude in order to view zonal motions, 
which are important in rapidly rotating fluids 
such as Earth's liquid outer core because of 
the influence of strong Coriolis forces. West- 
ward motion of a succession of flux foci was 
observed at the equator (Fig. 2A) and less 
clearly at mid-latitudes (e.g., Fig. 2B at 
40°S). Two-dimensional frequency-wave- 
number power spectra were calculated from 
the time-longitude diagrams. Peaks in these 
spectra pinpoint the preferred zonal wave- 
numbers m (where m = 360°/A and A is the 
angular wavelength in degrees) and frequen- 
ciest(wheref = 1/T and T is the period in 
years) of the zonal motion of the residual 
f1eld at each latitude. At the equator, the 
dominant wavenumber was m = 5 (i.e., A = 
72°) andf = 3.75 x 10-3 year-l (i.e., T= 
270 years), whereas at 40°S, the f1eld change 
was less monochromatic with more power at 
lower wavenumbers. At 20°N, we found a 
strong m = 8 signal consistent with high- 
resolution maps of the radial magnetic field at 
the core surface, recently obtained from sat- 
ellite measurements (17). 

The gradient of a diagonal line produced by 
a moving feature in a time-longitude diagram 
measures the apparent zonal speed of that fea- 
ture. We determined the power traveling at all 
possible gradients in our time-longitude dia- 
grams by means of a technique based on the 
Radon transform (18, 19). A prominent peak at 
the equator (Fig. 3) identifies the highest am- 
plitude, most robust zonal motion of the resid- 
ual field in the record, at a speed of 17 km 
year- l (0.27° year- l) westward. Less pro- 
nounced peaks were found at latitudes 55°N (18 
km year- l or 0.49° year- l) and at 40°S (26 km 
year-l or 0.56° year-l). To assess the longev- 
ity of the peaks, we applied the Radon speed 
determination method to time subwindows of 
the time-longitude diagrams. We found that the 
striking equatorial peak was present through- 
out, whereas the smaller peak at 55°N was 
obvious only from 1750 to 1880 and the peak 
at 40°S was strongest from 1800 to the present. 

Observations of zonal motion of mag- 
netic field at low latitudes can be accounted 
for by two rather different mechanisms, 

Fig. 1. Snapshot of the 
nonaxisymmetric radial 
magnetic field, high- 
pass filtered with a cut- 
off period of 400 years 
(referred to in the text 
as the residual field), 
shown at the core sur- 
face in 1850. 
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Fig. 2. Time-longitude diagrams of the residual field at specific latitudes (A) 0° (the equator) and 
(B) 40°S. Frequency-wavenumber spectra of these time-longitude diagrams are shown in (C) and 
(D), respectively; peaks pinpoint the dominant zonal wavenumbers (m) and frequencies (f = 1/T, 
where T is the period) of the zonal field motions. 
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Fig. 3. Power moving 
with eastward zonal 
speeds between -60 
and 60 km year-1 in 
time-longitude diagrams 
of the residual field, ev- 
ew 2° latitude from 
70°N to 70°S. A maxi- 
mum is found at the 
equator, indicating a ro- 
bust measurement of 
westward motion (at 
-17 km year-') in this 
region. Weaker signals 
are observed at mid-lat- 
itudes, particularly near 
40°S (-26 km year-1) 
and 55°N (-18 km 
year-1) 
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• Assuming the wave enables us to infer 
the azimuthal field 
– essentially hidden beneath the 

rocky mantle
– crucial for dynamo action

• The approximate dispersion relation: 

– a geomagnetic drift speed of                  
0.56 º/yr at 40º S (Finlay & Jackson 2003) 

– suppose half for a mean flow
– Given m=5, this implies a toroidal field 

Bf ~ 10 mT at s ~ 0.8ro
• equivalent to, or stronger than, the      

poloidal part Bs ≥ 3 mT (Gillet et al. 2010)

– constrains the dynamo mechamism?

Toroidal field strength within a planetary dynamo
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The fast modes !̂+ essentially recall the hydrodynamic Rossby waves,242

which travel prograde with the frequency !̂R about the advection part. They243

arise from a balance between the first two terms of (19), dh⇠zi/dt and ⌅C .244

By contrast, the slow modes !̂� are a unique solution of rotating MHD,245

sometimes called MR waves or MC-Rossby waves. Their properties become246

evident when taking the limit !̂2

M
/!̂

2

R
⌧ 1 on the slow mode, !̂�, to obtain247

(using the binomial approximation)248

!̂MR = �
!̂
2

M

!̂R

= �
m

3
hfB2

�
i(r2

o
� s

2)

2s4
, (22)

and the observed frequency will be the sum of !̂MR and the advection fre-249

quency !adv. This implies a much lower frequency and a retrograde propa-250

gation unless the advective flow is large and eastward. The corresponding251

phase speed is given VMR = !̂MR/m, and similarly for the Rossby and Alfvén252

phase speeds. The magnetic Rossby speed goes up as the wavenumber m in-253

creases or the radius s decreases. A balance between the last two terms, ⌅C254

and ⌅L, is vital for this mode, indicating that the time variations arise from255

the induction equation while the momentum equation is almost in balance.256

These slow waves will be distinguished from Alfvén or Rossby (fast MR)257

modes in terms of dispersion relations ! = !(m), phase velocity !/m, and258

vorticity balances.259

At fixed s and hence hfB2

�
i, all dispersion relations (20) are comprised of260

MR branches at lower wavenumber m and Alfvén branches at higher m. The261

transition will occur when !̂
2

M
/!̂

2

R
⇡ 1, i.e. m4

⇡ 2s6/(r2
o
� s

2)2hfB2

�
i. We262

did not observe signals of Alfvén branches in our simulations, but it could263

be possible if faster or smaller-scale disturbances are provided, for instance,264

by more vigorous convection. Studies of equatorial atmospheric dynamics265

demonstrate an impressive ability to distinguish several wave modes through266

space-time spectra and theoretical dispersion relations (e.g. Kiladis et al.,267

2009).268

Our assumption of a short azimuthal length scale means terms involving269

fB� dominate over the terms involving the poloidal field, fBs and fBz. We spec-270

ulate that if these terms do become significant, the dispersion relation would271

become almost proportional to m. However, solving the linear equations in272

this case becomes di�cult. Applying the assumption ⇠
0
z
⇡ �

1

s

@

@�
hu

0
s
i helps to273

simplify our equation considerably. To pursue analytical solutions when all274
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After all: hunt for magnetostrophic dynamos

• Convection-driven spherical dynamos 
finding (the way to) the Earth/planet-like models  
(e.g. Yadav et al. 2016; Dormy 2016; Schaeffer et al. 2017) 

– in force balances
– in flow properties (length scales, 

heat transfer, and waves) 

– in scaling laws too?
• more like Davidson (2013)?

balance each other; that is, the bulk of the fluid is in a dynamical
MAC state. We reiterate that, because Coriolis and pressure
forces are individually rather strong, the zeroth-order force
balance is largely geostrophic, and the notion of a MAC state in
our simulations is a first-order effect.
We plot the ratio of FL and FV as a function of the Elsasser

number Λ in Fig. 1D. In simulations with E= 10−4, as the
dynamo-generated field strength increases, the ratio FL=FV
reaches a maximum of about 8. Lowering E to 10−5 and 10−6
increases this maximum ratio to about 30 and 45, respectively.
The largest ratios between FL and FV are reached for cases with
Elsasser numbers of order 1. As shown in Fig. 1E, the ratio FL=FI
also follows the same qualitative trend as FL=FV . Note that a
MAC state can be disturbed by the viscous force; however, with
increasing flow turbulence, the inertial force can also do the
same (28). Therefore, it is appropriate to compare Lorentz force
and the sum of viscous and inertial forces. As Fig. 1F shows, such
a comparison provides a succinct way of highlighting the overall
dominance of the Lorentz force. In this context, it is worth
pointing out that assuming a higher magnetic Prandtl number
may help to increase the strength of the magnetic field and, in
turn, its influence on the flow (21, 25, 29). However, whether
such an approach is justified or not remains to be tested.

The trends in the forces highlighted above have important
consequences for the properties of convection. When a VAC
balance holds in rapidly rotating convection, the characteristic
flow length scale lu is proportional to D  E1=3; that is, length
scales become smaller with decreasing E (2, 13, 30). As shown in
Fig. 2 A−D, the convective structures in our HD simulations do
follow this trend qualitatively as E decreases. On the other hand, in
the MAC regime, lu is expected to be similar to the system size and
to remain independent of E (2, 16, 31). For simulation with
E≥ 10−4, both HD and dynamo cases have rather similar convec-
tive length scales (Fig. 2 E and F). At E= 10−5, the dynamo case
has a higher tendency for elongated structures in the radial di-
rection and fewer upwellings and downwellings in azimuthal di-
rection (Fig. 2G) compared with the HD case (Fig. 2C). At
E= 10−6, the dynamo case has significantly larger length scales
(Fig. 2H) than the corresponding HD setup (Fig. 2D). This in-
creased influence of the magnetic field is also reflected in the total
magnetic energy, which exceeds the total kinetic energy more and
more as E is decreased (Fig. S1). Another interesting feature in the
E= 10−6 dynamo case is the presence of a layer of small-scale
convection near the outer boundary; this is caused by a relatively
weaker Lorentz force in these regions (Fig. S2). We conclude that
hints of a MAC regime appear at E= 10−5 (32, 33), but this regime

A B C

D E F

Fig. 1. (A−C) Variation of the forces governing the dynamo simulations as a function of the convective supercriticality Ra=Rac. The Rac values assumed for (A)
E = 10−4, (B) E = 10−5, and (C) E = 10−6 are 6.96 × 105, 1.06 × 107, and 1.79 × 108, respectively (21). The magnitudes of Coriolis force and the pressure gradient
force are similar for most Rayleigh numbers, and the data points overlap. The legend describing the data in A−C is shown at the top. (D−F) Behavior of various
force ratios as a function of the dynamo generated Elsasser number Λ: (D) FL/FV, (E) FL/FI, and (F) FL/(FV + FI). The different colors in D−F represent different
Ekman numbers that are indicated in D. The curves connecting the E= 10−4 data points in D−F follow increasing Ra trend. Therefore, as the dipolar dynamos
with E= 10−4 become unstable at certain Λ, the curve turns back even though the Ra increases.
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is more prominent at E= 10−6. Furthermore, in a single system,
there might be regions where a MAC state prevails whereas, in
some other regions, it may not (also see refs. 29 and 34).
In Fig. 3, we present the three-dimensional morphology of

the convection in the HD and in the dynamo case for the
lowest-viscosity simulation with the largest ratio of Lorentz force
to viscous and inertial forces. The HD setup has small axially
aligned tube-like convection columns. In the dynamo case,
however, the convection occurs in the form of thin sheets
stretched in the cylindrically radial direction. It is also clear that,
compared with the HD case, the convective structures vary more
along the rotation axis. Both features demonstrate the influence
of the Lorentz forces on the convention morphology.
Another way to quantify the relaxed Proudman−Taylor con-

straint in the dynamo cases is to analyze the total heat transferred
from the bottom boundary to the top; this stems from the notion
that rotation quenches the efficiency of convection by suppressing
motions along the rotation axis (12). Any relaxation of this

constraint will lead to a gain in heat transfer efficiency. We use the
ratio of the Nusselt number Nu (ratio of the total heat and the
conductive heat transferred from the bottom to the top boundary)
for dynamo and HD cases as a function of the dynamo-generated
average magnetic field strength (Fig. 4). At E= 10−4, the Nu ratio
remains close to unity, implying that the convective heat transport
in dynamo and HD cases is similar. At E= 10−5, the Nu ratio peaks
for Λ≈ 3 and reaches a value of about 1.3 (18). This enhancement
of heat transport by the presence of a magnetic field is more pro-
nounced when we further decrease E to 10−6. Here, the heat flow is
doubled for Λ≈ 1. Comparing this figure with Fig. 1 D−F high-
lights that the gain in the heat transfer efficiency in the dynamo
cases is largest when the Lorentz force is maximally dominant
over viscous and inertial forces.

Discussion
To summarize, we used a systematic parameter study to test the
existence of a dynamical state in dynamo simulations where

Fig. 2. (A−D) Radial velocity, given in terms of the Reynolds number (u D=ν, where u is the local velocity), in the equatorial plane of the HD simulations.
(E−H) The same for the corresponding magnetohydrodynamic cases. (A and E) E = 10−3, Ra = 6 × 105; (B and F) E = 10−4, Ra = 7 × 106; (C and G) E = 10−5, Ra =
108; and (D and H) E = 10−6, Ra = 2 × 109. The Rayleigh number of all of the cases shown is about 10 times Rac. The color maps are saturated at values lower
than the extrema to highlight fainter structures.

Fig. 3. Perspective view of (A) an HD case and (B) a dynamo case with E= 10−6, Pm = 0.5, and Ra= 2× 109. The radial velocity on the equatorial plane is given
in terms of the Reynolds number. The blue and light orange contours represent radial velocity of −300 and 300, respectively.

12068 | www.pnas.org/cgi/doi/10.1073/pnas.1608998113 Yadav et al.
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at Pm/Pr = 18, E = 3*10-4, Ra/Rac = 1.7 
on a SF branch L ~ 1.1 (Dormy 2016)

508 E. Dormy

FIGURE 7. (Colour online) Meridional cross-sections on the strong-field branch at a given
time for the same parameters and same phase as in figure 5(b). On the left side is
presented �2@u/@z · er, and on the right side (r ⇥ ((r ⇥ B) ⇥ B)) · er using the same
colour range.

orders of magnitude, we can assess whether the two terms tend to balance each other
locally in space. To this aim, one can consider the curl of the momentum equation
(2.1), neglecting both the inertial term and the viscous term,

�2
@u
@z

⇠ Ra qr ⇥ (Tr) + r ⇥ ((r ⇥ B) ⇥ B). (4.5)

If we now consider the radial component of the above equation, i.e. its toroidal
component, the first term on the right-hand side disappears. The remaining two terms
were computed numerically at a given instant in time and on a cross-section in an
arbitrary meridional plane. These quantities are presented on figure 7.

Deviations between the two cross-sections can imply only non-vanishing inertial
and/or viscous effects. Estimations of these terms reveals that the viscous term
accounts for the differences visible on the figures (inertia being one order of
magnitude smaller). The comparison reveals such effects (in particular, in viscous
boundary layers), but otherwise clearly demonstrates that the radial component of
the curl of the Lorentz force balances that of the Coriolis force, as expected in the
strong-field limit.

The viscous force will of course not always be negligible in the parameter regime
considered here. It can be more important at some places or times. To illustrate
this, the quantities represented on figure 7 are represented at a later time in the
form of three-dimensional isosurfaces on figure 8. The blue and red isosurfaces,
respectively, correspond to ±90 % of the peak values. While deviations from
magnetostrophy are obvious, in particular comparing the centre of each figure, the
dominant magnetostrophic balance is highlighted. Deviations are here primarily due
to viscous forces. Boundary layers have not been represented in these figures.

at E = 10-6, Pm/Pr = 0.5, L ≲ 4 (Yadav et al. 2016)

-2 *ur/*z |∇ × (j×B)|r
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After all: hunt for magnetostrophic dynamos

• Convection-driven spherical dynamos 
finding (the way to) the Earth/planet-like models  
(e.g. Yadav et al. 2016; Dormy 2016; Schaeffer et al. 2017) 

– in force balances
– in flow properties (length scales, 

heat transfer, and waves) 

– in scaling laws too?
• more like Davidson (2013)?

(Yadav et al. 2016)
ur at E = 10-6, Pm/Pr = 0.5, Ra/Rac = 10 

Turbulent geodynamo simulations 11

Figure 7. 3-D renderings of the fields in the S2 simulation, at the instant marked by a square in Fig. 2. The faint white line is the rotation axis.

(Christensen & Aubert 2006), the fraction of axial dipole in the
observable spectrum (up to ! = 13) is given by fdip in Table 2, and is
in reasonable agreement with the Earth’s value (fdip ! 0.68). Fig. 8
shows the magnetic field at the surface of S1 and S2 at a given time

(the same time as in Figs 5 and 7). Interestingly, the surface magnetic
field displays similarities with the surface codensity (see Fig. 7), in
particular sharp gradients near the tangent cylinder. We note that
the snapshot of S2 in Fig. 8 displays a reversed flux patch at high

magnetic forces play a crucial role together with Coriolis and
buoyancy forces (MAC state), as is expected to be present in
Earth’s core. We lowered the viscosity to a small value, close to
the limit allowed by today’s computational resources, and found
that Lorentz forces become equal in strength to (uncompensated)
Coriolis and buoyancy forces and, for a limited range of Rayleigh
numbers, far exceed viscous and inertial forces. The increased
influence of the Lorentz force leads to large-scale convection,
substantial axial variation in the convection structures, and a
100% increase in the heat transfer efficiency compared with the
corresponding HD setup. All of these features are expected the-
oretically (2). For higher viscosity values, the convection is much
less affected by the magnetic field (17).
We note that, in our simulations the Lorentz force is substantially

smaller than the Coriolis force or the pressure force (taken individ-
ually). Hence, the state can be called quasi-geostrophic (26). None-
theless, a completely geostrophic state is impossible, and the essential
question is what balances the residual Coriolis force. Because these
are the Lorentz and Archimedean forces, with an insignificant role for
viscosity and inertia, it is also justified to speak of aMAC balance. We
also note that, although a MAC balance is satisfied globally, this does
not imply that the residual Coriolis force, Lorentz force, and buoyancy
force are pointwise of the same magnitude. For example, strong
Lorentz forces seem to be rather localized (Fig. S2), as found in
previous studies (e.g., ref. 34). In regions where the Lorentz force is
weak, the balance could be almost perfectly geostrophic, or buoyancy
alone could balance the residual Coriolis force.
Our results show some similarities with earlier studies done in

a similar context. Larger-scale convection in dynamo simulations
compared with their HD counterparts has been reported in ro-
tating convection in Cartesian geometry (35); there, the dynamo
simulation with E= 10−6 showed about 60% increase in Nu. A
recent laboratory experiment of rotating magnetoconvection
(imposed magnetic field) in a cylinder also showed about 30%
increase in Nu due to the presence of the magnetic field (at
E= 4× 10−6 and Λ≈ 2) (36).
In the context of geodynamo simulations, studies at Ekman

numbers comparable to the lowest value used in our study have
been reported before. A substantial change in the convection

length scale due to the dynamo-generated magnetic field was
found, but it only occurred in cases with constant heat flux
boundary conditions (37). In contrast, we find the same en-
largement of flow length scales also for fixed temperature con-
ditions. Differences in the model setup and parameter values
prevent us from elucidating the exact cause for these differences.
Miyagoshi et al. (38, 39) also performed geodynamo simulations
with E≈ 10−6 (in our definition) and observed a “dual-convec-
tion” morphology where the deeper convecting regions had thin
cylindrically radial structures and the outer regions had very
large-scale spiraling features embedded into a prominent zonal
flow. We also found such convection morphology at E= 10−6, in
both HD and dynamo simulations, but only at low Rayleigh
numbers (Ra=Rac< 10). Again, our simulations and these studies
(38, 39) are significantly different in model details; for example,
they assumed that gravity dropped sharply with radius, whereas, in
our case, it linearly increases from the inner to the outer boundary,
as is appropriate for Earth’s core. A geodynamo simulation at the
lowest Ekman number reached so far has been performed by Nataf
and Schaeffer (40) and shows rather small flow scales. Because
hardly any details of the simulation are available, it is difficult to
assess the reasons. Possibly, strong driving could make inertial
forces significant, leading to a compromised MAC state.
Our parameter study has shown that, at an Ekman number

of 10−6, a MAC state, as is expected in Earth’s core, is very nearly
reached, albeit only in a limited range of moderate Rayleigh
numbers. As a consequence, the magnetic dipole dominates more
strongly over higher multipoles at the outer boundary than it does
in the geomagnetic field. Furthermore, the dipolar mode in the
E= 10−6 simulation appears to be rather stable and does not show
indications of reversals, unlike the geomagnetic field. In previous
dynamo simulations, the onset of reversals has been associated with
a growing influence of the inertial force at higher Rayleigh number
(21, 34). We expect that pushing the Ekman number to even lower
values would expand the range where a MAC state exists toward
more strongly supercritical values of the Rayleigh number (41), but
this does not necessarily imply that inertia becomes significant. It
remains an open question whether inertial effects are responsible
for triggering reversals in the geodynamo (which would then not be
in a pure MAC state), or if some other effects associated with a
more strongly supercritical Rayleigh number play a role in rever-
sals. Another challenge to tackle is the extreme value of the
magnetic Prandtl number, which is also fundamentally important
for the geodynamo mechanism (2). In Earth, Pm is expected to be
about 10−6, implying a large difference in the typical length scales
of the velocity and the magnetic field (the latter varying on larger
scales). To have a magnetic Reynolds number large enough to
sustain a dynamo at low Pm, the convection must generate a
Reynolds number in excess of a million. To keep the system
rotationally dominant and very turbulent, one must inevitably de-
crease the Ekman number to much smaller values than what we
could reach in this study. Therefore, a way forward in future is to
strive for even lower Ekman numbers and lower magnetic Prandtl
numbers to approach the conditions of the geodynamo.
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8 N. Schaeffer et al.

Figure 4. Mean flow (averaged in time and along the rotation axis) in simulations S1 (left) and S2 (right). The streamlines materialize the velocity field, while
the colour map highlights the azimuthal component. In these views from the north pole, the black dashed circle indicates the location of the tangent cylinder.
Top row: the time-average spans 0.35 magnetic diffusion time or 190 turnover times for S1, and 0.016 magnetic diffusion time or 8 turnover times for S2.
Bottom row: the time-average spans 0.044 magnetic diffusion time or 24 turnover times for S1.

more than 5000–10 000 yr. One outstanding difference between S1
and S2 is that the anticyclonic gyre leads to strong westward veloc-
ities at the equator in S2, whereas it is weak and mostly eastward
in S1.

3.3 Instantaneous fields

We now turn to instant snapshots of the fields, which are repre-
sented in the equatorial plane for simulations S1 and S1* in Fig. 5,
contrasting the differences between dynamo (S1) and non-magnetic
convection (S1*). The codensity field C exhibits very small scales
near the inner-core where the plumes originate in both S1 and S1*.
Further away from the inner-core, the codensity field exhibits much
larger structures in S1 than in S1*. The plumes also reach further
out in S1 whereas they seem to be stopped by the zonal winds in
S1* (see Ur in Fig. 5). However, the overall state is better mixed in
S1* (lower contrasts in variations of C). This illustrates the effect
of the magnetic field on the convection.

Fig. 6 shows similar views for S2 at two different times character-
ized by moderate and strong magnetic fields (respectively marked
by circle and square in Fig. 2). 3-D renderings of the strongest
field situation are shown in Fig. 7, displaying also meridional

cuts.3 Very small-scale buoyant plumes originate near the inner-
core for the moderate and strong field snapshots, but further away
the scales appear larger where the strongest field reigns. Radial
velocities are also weaker in these regions. There are notable ve-
locity field patterns with azimuthal wavenumbers much smaller
than m = 67—the critical wavenumber at onset—especially in the
strong field regions. These large scales coexist with smaller scales
close to the inner-core, but also in regions of weaker magnetic
field.

This enlargement of convection scale is in broad agreement with
the observations made by Matsui et al. (2014) and Yadav et al.
(2016b) at higher Ekman numbers and lower forcing (see also Hori
et al. 2012). The mechanism proposed by Matsui et al. (2014)
does also fit our simulations. Namely, the presence of important
variations of codensity over large regions (Fig. 6 top) produces
non-axisymmetric thermal winds that convert the poloidal field into
azimuthal field. The field inhibits motions, preventing the coden-
sity anomalies to mix, thus sustaining the phenomena. Large scale

3
Note also that supplementary meridional slices of the instantaneous veloc-
ity field can be seen at https://doi.org/10.6084/m9.figshare.5002199

at E = 10-7, Pm/Pr = 0.1, L ~ 3.7 
(<0.05 tmag; Schaeffer et al. 2017)



After all: hunt for magnetostrophic dynamos

• Convection-driven spherical dynamos  
finding (the way to) the Earth/planet-like models 
(e.g. Yadav et al. 2016; Dormy 2016; Schaeffer et al. 2017) 

– in force balances
– in flow properties (length scales,

heat transfer, and waves) 

– in scaling properties (e.g. Aubert et al. 2017) 
• more like the one by Davidson (2013)?

– reversals also possible (Jones & Tsang 2025)

• The proven importance enables us to 
adopt the approximated approaches too? 
– e.g. taking the limit (Jackson et al.)

(after Christensen 2010)
566 U.R. Christensen

Table 1 Proposed scaling laws

# Rule Author Remark

1 BpR3
p ∝ (ρ"R5

p)a e.g. Russell (1978) magnetic Bode law

2 B2 ∝ ρ"2R2
c Busse (1976)

3 B2 ∝ ρ"σ−1 Stevenson (1979) Elsasser number rule

4 B2 ∝ ρR3
c qcσ Stevenson (1984) at low energy flux

5 B2 ∝ ρ"R
5/3
c q

1/3
c Curtis and Ness (1986, modified) mixing length theory

6 B2 ∝ ρ"3/2Rcσ
−1/2 Mizutani et al. (1992)

7 B2 ∝ ρ"2Rc Sano (1993)

8 B2 ∝ ρ"1/2R
3/2
c q

1/2
c Starchenko and Jones (2002) MAC balance

9 B2 ∝ ρR
4/3
c q

2/3
c Christensen and Aubert (2006) energy flux scaling

or its dynamo region. It is not immediately obvious which quantities play the key role,
but candidates are the radius Rc of the electrically conducting fluid core of the planet, the
conductivity σ and density ρ of the core, the rotation rate " and the convected energy
flux qc in the core. Also, it is not clear if a single scaling law is applicable to all magnetic
planets. This may require that their dynamos are qualitatively similar and differ only in
specific parameter values. As we will see, there are probably sufficiently severe differences
between planetary dynamos so that the application of the same scaling law to all of them is
not straightforward.

The interest in a scaling theory for planetary magnetic fields is twofold. In terms of
the theoretical understanding of planetary magnetism, a well-established scaling law is an
essential part of a comprehensive dynamo theory. On the more practical side, such a law
would allow to make predictions for the paleo-fields of the solar system planets, at times
when control parameters (e.g. qc , ") had been different and when now extinct dynamos
were active in Mars or other planetary bodies. This has possible applications to the question
of atmospheric evolution and planetary habitability (Dehant et al. 2007).

Over the past decades space missions provided data on the first-order magnetic field
properties of the planets. At the same time, scaling laws for their field strength have been
proposed with a rather confusing diversity (Table 1). The ‘magnetic Bode law’ (#1 in the
Table 1), suggesting a relation between the magnetic dipole moment and the angular mo-
mentum of the planet, is purely empirical. Most other scaling laws are based on an assumed
force balance between Coriolis force and Lorentz force, but make different assumptions
on the characteristic velocity or length scales in the dynamo. Rules #4 and #9 in Table 1
consider the energy flux that is available to balance ohmic dissipation.

In Table 1, B usually refers to the characteristic magnetic field strength inside the dy-
namo. It is assumed that the strength of the exterior dipole field is proportional to B . The
predictions of the proposed scaling laws have been compared with the observed planetary
fields and fair or good agreement has been claimed in every case. Given the diversity of the
scaling laws, it seems quite surprising that they all fit the observations more or less well.
One reason is that in many cases the comparison has been made in terms of the dipole mo-
ment, which means that the predicted field strength is multiplied by the cube of the radius.
The pitfalls of such a procedure has been discussed by Cain et al. (1995) for the case of the
magnetic Bode law. Suppose that for a set of hypothetical planets the surface field strength
Bp is uncorrelated with ρ, " and Rp , and that all these quantities vary within some range.
When Bp is multiplied by R3

p and ρ" is multiplied by R5
p to obtain the magnetic moment

and the angular momentum, respectively, a correlation is found between the logarithms of

lB = Rm-1/2 Rc

CIA balance? 
+ 10 B2 ∝ r1/3 Rc2/3 qc2/3 Davidson (2013) energy flux, 

given B=B(l,qc)
MAC balance 



Summary
• Magneto-strophic regimes were long speculated for 

planetary interiors/dynamos
– where MAC forces will play a predominant role (cf. geo-strophic)

• The regime may be signified by
– convection & its driven dynamos (subcritical/strong-field) 
– larger length scales (cf. the rotating conv/weak-field)
– slower waves/oscillations

• Now proving the existence and its branches
– suggesting Earth/planet-like models dynamically become possible  

• Relevant GAFD implications include
– scaling laws, termination of dynamos, magnetic secular variations



Precessing spherical shells S47

Figure 15. Radial velocity in the equatorial plane (top panel) and radial magnetic field at the core surface (bottom panel) for two different values of the
viscosity, near the onset of dynamo action. Lower viscosity (right: E = 1.87 × 10−5, Pm = 1) results in much smaller scales in both velocity and magnetic
fields than the larger viscosity (left: E = 1.25 × 10−4, Pm = 0.75). Both cases have Po = 0.3, α = 120◦ and a small insulating inner-core (η = 0.1).

Figure 16. Magnetic and kinetic energy spectra as a function of spherical harmonic degree ℓ at the fluid surface for the magnetic field and below the Ekman
layer for the velocity field. The black dashed lines indicate slopes of −3 for the kinetic energy spectra. The two cases have Po = 0.3, α = 120◦, a small
insulating inner-core (η = 0.1) and Pm = 1 and differ by their Ekman number E = 1.25 × 10−4 and E = 1.87 × 10−5, the latter displaying more energy at
smaller scales.
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対流/熱以外でもダイナモ

• 他の駆動源による磁場形成
– 安定成層 (Petitdemange et al. 2023)

• Taylor-Spruit (W効果 + トロイダル磁場の不安定化)

– 歳差運動 (Tilgner 2005; Cébron et al. 2019)
• ほぼ非双極子型 (小スケール) の磁場

– 波 (Davidson 2014; Davidson & Ranjan 2015)
– etc.

(Cébron+ 2019)

S36 D. Cébron et al.

Figure 1. Schematic description of the problem.

is discretized with second order finite differences. XSHELLS has
been benchmarked on convective dynamo problems with or with-
out a solid inner-core (Marti et al. 2014; Matsui et al. 2016). In the
following, the so-called hydrodynamic simulations do not take into
account the magnetic field (B), whereas our so-called magnetohy-
drodynamic (MHD) simulations solve the full system (1)–(4). The
range of hydrodynamic parameters investigated in this study are
summarized in Fig. 2 and compared to the typical values expected
for planetary cores. In addition we explore the range 0.2 < Pm <

20 in our MHD simulations.
We checked on a few cases that computing in the mantle frame

(i.e. the frame corotating with the solid shell) gives the same result
as in the precession frame. Note that in both frames, the flow is
dominated by a strong solid-body rotation (along a third axis). Such
large advection speeds are known to cause accuracy issues that can
lead to suppression of instabilities (e.g. Springel 2010). The time-
step in XSHELLS is adjusted to ensure stability, but we checked
accuracy by dividing the time-step by 3 to 7 on several cases. We
found that when instabilities are saturated, stable time steps are
small enough to ensure accurate results. However, we have noticed
that for one specific case very close to the onset of instability, the
growth rate was biased towards stability. As not all runs could be
checked, it is not impossible that a few such cases are still included
in our results, but it would not change the conclusion drawn in this
paper.

In the following, we call hydrodynamic cases those with no mag-
netic field or with magnetic energy lower than 10−16 to ensure no
perturbation of the flow by the magnetic field.

3 H Y D RO DY NA M I C S

3.1 Laminar Base Flow

The primary flow forced by precession in a sphere is mainly a tilted
solid body rotation, a flow of uniform vorticity (Poincaré 1910). In a
spherical container, the direction and amplitude of the fluid rotation
vector are governed by a balance between the viscous torque at
the core–boundary and the gyroscopic torque resulting from the
precession of the liquid core (Busse 1968; Noir et al. 2003). We
briefly recall in Section A1 of appendix A the derivation of Busse
(1968). A limitation of this general formulation, accounting for
the Ekman boundary layer action, arises from the implicit nature
of the final equation. Indeed, while approximate expressions can
be obtained in certain limits (e.g. Boisson et al. 2012), we cannot
derive a general analytical explicit solution. In the context of a
precessing ellipsoid, Noir & Cébron (2013) proposed an alternative
to the torque balance, using a simpler ad hoc viscous term. Using
this successful approach in a spherical shell, we obtain an explicit
expression of the dimensionless fluid rotation vector ! in the frame
of precession (see Section A2 of appendix A for details):

!x = 1
1 + Po

[λi + χ cos α] χ sin α

χ (χ + 2λi cos α) + |λ|2
, (5)

!y = − 1
1 + Po

χλr sin(α)
χ (χ + 2λi cos α) + |λ|2

, (6)
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layers, dynamo action (and thus magnetic
braking) requires a different source of hydro-
dynamic turbulence.
Severalmodels have been considered to pro-

vide angular momentum transport, includ-
ing internal waves (19) ormagnetic instabilities
(20). An example of the latter approach is the
Tayler-Spruit (TS) dynamo model (21, 22). In
this model, magnetic field generation in ra-
diative layers relies on (i) the winding of a
poloidal field into a toroidal field by differ-
ential rotation [theW-effect (16)] and (ii) the
destabilization of the resulting strong, toroi-
dal, and axisymmetric magnetic field by the
Tayler instability (23), which regenerates a
poloidal field and thus (in theory) closes the
dynamo loop initiated by differential rota-
tion. However, global numerical simulations
have not produced TS dynamos, casting doubt
upon whether the simplifications made in
the theory are valid when the plasma is tur-

bulent (24). It is therefore unclear whether a
dynamomechanism could operate in a stably
stratified stellar layer. We sought to numer-
ically investigate whether a magnetic field
can build up through dynamo instability, trig-
ger magnetohydrodynamic turbulence, and
achieve efficient angularmomentum transport
in a radiative star.

Global numerical simulations

We model a radiative stellar layer by consid-
ering the swirling flow of a stratified, nonideal,
electrically conducting fluid between two co-
axial, spherical shells spinning at different
rates. The intensity of the differential rota-
tion is controlled by the dimensionless Rossby
number Ro ≡ DW=W, whereW andWþ DW are
the angular velocities of the outer and inner
shell, respectively, and the strength of stratifi-
cation is quantified by the buoyancy frequency
N (25).

When the differential rotation across the
radiative zone is weak (compared with overall
rotation), the flow is stable and axisymmetric
and all velocity perturbations decay away rap-
idly. For steeper rotation profiles, the rota-
tional invariance of the flow is broken by the
destabilization of a free shear layer. In this case,
Fig. 1A shows the resulting magnetic energy.
Initially weak magnetic fields undergo expo-
nential amplification and saturate to a mag-
netic state, whose final amplitudes can be tuned
in our simulations by varying the fluid's ratio
of molecular tomagnetic diffusivities (the mag-
netic Prandtl number Pm). For large values
of the plasmamagnetic diffusivity Pm < 0:5ð Þ,
the shear instability amplifies a laminar and
mostly axisymmetric toroidal dynamowhich
saturates at weak magnetic energies [the di-
mensionless Elsasser number Λ (25) is always
less than one]. However, if the toroidal energy
exceeds a transition valueΛ∘ ∼ 1, a secondary
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Fig. 2. Transition to tur-
bulence. (A) Time series
of the total kinetic and
magnetic energy densities.
The arrow marks the
time where the amplitude
of the axisymmetric
component of the
azimuthal magnetic field
Bϕh locally exceeds
the prediction of the Tayler
instability, BCϕ (21). Angle
brackets denote spatial
averaging in the azimuthal
direction (ϕ coordinate).
(B) Radial profiles of the
azimuthally averaged
angular velocity Wh in the
equatorial plane for two
distinct times, labeled [t1]
and [t2] in (A), with ri
and ro as the radii of the
inner and outer shells,
respectively. The onset
of the instability causes
the rotation profile to
flatten between [t1] and
[t2]. Snapshots below are
of (C and D) the non-
axisymmetric angular
velocity in the equatorial
plane, (E and F) the
azimuthal magnetic field in
the equatorial plane and
(G and H) the same
quantity in the meridional
plane. Results are
shown for the times [t1]
(panels C, E, and G)
and [t2] (panels D, F, and H), before and after the onset of secondary (Tayler) instability.
This simulation has parameters E ¼ 10%5, N=W ¼ 1:24, Pr ¼ 0:1, Ro ¼ 0:78, and Pm ¼ 1.
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vide angular momentum transport, includ-
ing internal waves (19) ormagnetic instabilities
(20). An example of the latter approach is the
Tayler-Spruit (TS) dynamo model (21, 22). In
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diative layers relies on (i) the winding of a
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electrically conducting fluid between two co-
axial, spherical shells spinning at different
rates. The intensity of the differential rota-
tion is controlled by the dimensionless Rossby
number Ro ≡ DW=W, whereW andWþ DW are
the angular velocities of the outer and inner
shell, respectively, and the strength of stratifi-
cation is quantified by the buoyancy frequency
N (25).

When the differential rotation across the
radiative zone is weak (compared with overall
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and all velocity perturbations decay away rap-
idly. For steeper rotation profiles, the rota-
tional invariance of the flow is broken by the
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Fig. 1A shows the resulting magnetic energy.
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netic state, whose final amplitudes can be tuned
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At t = t2 after the Taylor instability sets in
(N/W =1.24; Petitdemange+ 2019)
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Rossby waves

A fundamental class of waves in the rotating dynamics

arising from vortex tube stretching/shrinking

the simplest dispersion relation: ωR = ω k
k2+l2

[Boyd(1980)]

Nonlinear Rossby waves may reveal coherent
structures:

soliton, cnoidal waves

QG PV equation with shear flows and/or
topography [Redekopp(1977),Malanotte-

Rizzoli(1982)]

equatorial shallow-water eq [Boyd(1980)]

envelope soliton [Yamagata(1980),Boyd(1983)]

modon, rider [Flierl et al.(1980)]

Theories were applied to Jupiter’s GRS, etc.



Magnetic Rossby waves
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[Malkus(1967)]

The presence of magnetic field may split it into

fast modes → + ωR

!
1 +

ω2

A
ω2

R

"

slow modes → ↑
ω2

A
ωR

= ↑
(B0·k)2|k|2

εµ0ϑk

in a magnetostrophic/MC balance
sensitive to the toroidal field
preferred for spherical convection at
large Pm and moderate Pr

Their potential geo/astro-physical applications to

slow modes in Earth’s fluid core: slow [Hide(1966),Hori et al.(2015)]

fast modes in a thin stratified layer at the top of the core
[Braginsky(1967),Chulliat et al.(2015)]

fast modes in solar tachocline [Zaqarashvili et al.(2010),McIntosh et al.(2017)]

Linear theory is under debate [Márquez-Artavia et al.(2017)].



Can nonlinear MR waves shape coherent structures?

isolated, sharp crests seen in spherical dynamo simulations

solitary waves in equatorial, shallow-water MHD [London(2017)]

no mean flow U , ε → tanh y, a basic field B → tanh y
fast modes for weak field: cf. [Boyd(1980)]
’a slow magnetostrophic’ mode for strong field

slow modes in QG MHD/MC models [Hori et al.(2020)]

to test the role of shear flow U , topography ε, and magnetic field B
no stable stratification

modons in shallow-water MHD [Lahaye & Zeitlin(2022)]

[Hori, Teed & Jones (2018)]



Busse’s QG annulus model

B   U
- -

adapted from [Jones(2015)]

A cartesian model useful to analyse the rapidly
rotating dynamics in a sphere [Busse(1970)].
Here the geometry is represented by sloping
top/bottom boundaries with a small angle ϑ.
With the rotation axis !ẑ, we suppose
|ux|, |uy| ↓ |uz|.

In the MHD [Busse(1976),Abdulrahman et al.(2000)]

we begin with equations for the axial vorticity,
ϖz = ẑ · (↔↗ u), and the axial electric current,
Jz = ẑ · ( 1

µ0
→↑B):

ϱϖz

ϱt
+ u ·↔ϖz ↑ 2!

ϱuz

ϱz
=

1

ς
B ·↔Jz , (1)

ϱB

ϱt
= ↔↗ (u↗B) (2)

with ↔ · u = ↔ ·B = 0. Boundary conditions are uz = ±uyϑ at z = ±L
2

and uy = 0 at y = 0, D.



Streamfunctions and scaling

Using a streamfunction we can write u → ↔↗φ(x, y)ẑ. Further, we assume
the magnetic field where |Bx|, |By| ↓ |Bz|, and represent B → ↔↗ g(x, y)ẑ.
The vorticity and the current are given by ϖz = ↑”2φ and Jz = ↑

1
µ0

”2g,

respectively, with ”2 = ϖ2

ϖx2 + ϖ2

ϖy2 .

Now we nondimensionalise variables as

#x =
x

↼
, #y =

y

D
, #t = t

↼/cMR

, #φ =
φ

cMRD
, #g =

g

B0D
, and #ϑ =

ϑ/L

ϑ0/L0

where cMR =
c2A
cR

=
B2

0
/εµ0

4!ϑ0ϖ2/L0

. This gives us the dimensionless equations

ϱ

ϱ#t
#”2

#φ +
ϱ( #φ, #”2

#φ)
ϱ(#y, #x) ↑

cR
cMR

#ϑϱ
#φ

ϱ#x =
cR
cMR

ϱ(#g, #”2#g)
ϱ(#y, #x) (3)

ϱ

ϱ#t
#g =

ϱ(#g, #φ)
ϱ(#y, #x) (4)

with ↽ = ϖ
D and #”2 =

ϱ2

ϱ!x2 + ↽2 ϱ2

ϱ!y2 . Hereafter we drop all tildes.



Magnetostrophic regime

Of interest is the regime when cR
cMR

=
c2R
c2A

↓ 1. Then the vorticity equation

(3) becomes

↑ϑ
ϱφ

ϱx
=

ϱ(g,”2g)

ϱ(y, x)
(5)

i.e. the magnetostrophic or MC balance. The slow wave motion at this
regime arises from the time-derivative term of the current equation.

(The linearlised equations for the uniform basic state allow solutions of the

form ei(kx→ωt) sinn⇀y, i.e. ω ↑ Uk = ↑
B

2

ϱ
k(k2 + n2⇀2). )

Two nonlinear terms in the governing equations: B ·↔Jz and u↗B. No
roles of the advective term ςu ·↔ϖz in the vorticity equation.



Gardner-Morikawa transformation

To seek its solitary solutions for a long wave, we introduce new variables
with a small parameter ⇁ (↘ 1):

ζ = ⇁1/2(x↑ c t) , τ = ⇁3/2t (6)

where c is a constant (to be determined). Also suppose ↽ = O(1).

The vorticity and induction equations are rewritten as

↑ϑ
ϱφ

ϱζ
=

$
ϱg

ϱy

ϱ

ϱζ
↑

ϱg

ϱζ

ϱ

ϱy

%$
⇁
ϱ2

ϱζ2
+

ϱ2

ϱy2

%
g (7)

$
↑c

ϱ

ϱζ
+ ⇁

ϱ

ϱτ

%
g =

$
ϱg

ϱy

ϱ

ϱζ
↑

ϱg

ϱζ

ϱ

ϱy

%
φ (8)

with boundary conditions ϖς
ϖφ

= 0 at y=0,1.



Asymptotics: reductive perturbation method I

We now expand the dependent variables with ⇁ as

φ = φ0(y) + ⇁φ1(ζ, y, τ) + .. , g = g0(y) + ⇁g1(ζ, y, τ) + .. , (9)

provided the basic state:

U =
dφ0

dy
êφ = U(y)êφ , B =

dg0
dy

êφ = B(y)êφ . (10)

At O(1) the vorticity and induction equations, (7)-(8), are both trivial.
The vorticity equation (7) at O(⇁) gives

↑ϑ
ϱφ1

ϱζ
=

$
B

ϱ2

ϱy2
↑B

↑↑

%
ϱg1
ϱζ

(11)

and so does the induction equation (8)

(U ↑ c)
ϱg1
ϱζ

= B
ϱφ1

ϱζ
. (12)



Asymptotics: reductive perturbation method II

Combining the two, we obtain a homogeneous PDE about g1:

&
(U ↑ c) +

B

ϑ

$
B

ϱ2

ϱy2
↑B

↑↑

%'
ϱg1
ϱζ

= 0 (13)

where → stands for the ordinary derivative d
dy . Boundary conditions are

ϖg1
ϖφ

= 0 at y=0,1.

We assume solutions in the form of g1 = G(ζ, τ)▷(y) where ▷ should be a
solution to the second order ODE:

&
B

ϑ

$
B

d2

dy2
↑B

↑↑

%
+ (U ↑ c)

'
▷ = 0 (14)

with ▷ = 0 at y = 0, 1. An eigenvalue problem about c and ▷.

It becomes singular wherever B
2
/ϑ has zeros. By contrast, the

nonmagnetic case leads to a critical layer where c ≃ U [Redekopp(1977)].
We focus on nonsingular solutions, i.e. discontinuous spectra.



At O(ω2)

Now proceed to the next order to determine the amplitude function ▷(y).
The vorticity and induction equations (7)-(8) at O(⇁2) are

↑ ϑ
ϱφ2

ϱζ
=

$
B

ϱ2

ϱy2
↑B

↑↑

%
ϱg2
ϱζ

+B
ϱ3g1
ϱζ3

+

$
ϱg1
ϱy

ϱ

ϱζ
↑

ϱg1
ϱζ

ϱ

ϱy

%
ϱ2g1
ϱy2

(15)

(U ↑ c)
ϱg2
ϱζ

+
ϱg1
ϱτ

= B
ϱφ2

ϱζ
+

$
ϱg1
ϱy

ϱ

ϱζ
↑

ϱg1
ϱζ

ϱ

ϱy

%
φ1 . (16)

After some algebra, they end up an inhomogeneous PDE for g2:
&
B

ϑ

$
B

d2

dy2
↑B

↑↑

%
+ (U ↑ c)

'
ϱg2
ϱζ

= ↑
ϱ3G

ϱζ3

(
B

2

ϑ
▷

)
↑

ϱG

ϱτ
▷

↑G
ϱG

ϱζ

*
2B

ϑ
(▷↑▷↑↑

↑ ▷ ▷↑↑↑)↑ ▷▷↑↑

$
B

ϑ

%↑

+ ▷2

(
B

↑↑

ϑ

)
↑
+

(17)

with ϱ2g2
ϱς

= 0 at y = 0, 1.



Solvability condition at O(ω2)

When ▷ = 0 at the boundaries, the LHS/homogeneous part of (17) has
the solutions same as at O(⇁). So the solvability condition to suppress
secular terms in the RHS/forcing part is given by
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(18)

where ▷† denotes the adjoint eigenfunction.

The result (18) shows a Korteweg-de Vries equation,

ϱG

ϱτ
+ ◁ G

ϱG

ϱζ
+ 0

ϱ3G

ϱζ3
= 0, (19)

if ◁ and 0 are both nonzero. Well-known solutions are solitary and cnoidal.



Some remarks

The presence of U only impacts the dispersive term explicitly
(unlike nonmagnetic cases). Note the profile of U may impact
the eigenfunction ▷ and thus the nonlinear term.

If B and ϑ are both independent of y, (18) is reduced to

ϱ3G

ϱζ3
B

2

ϑ

, 1

0

▷†▷ dy +
ϱG
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, 1

0

▷† ▷↑↑dy

+G
ϱG

ϱζ

2B

ϑ

, 1

0

▷† (▷↑▷↑↑
↑ ▷ ▷↑↑↑)dy = 0 .

(20)

The nonlinear term vanishes for a harmonic function satisfying
▷→→ = C▷ with C being constant. This is the case when U is also
uniform. A variable basic field or topography or flow is crucial here.



cf. Nonmagnetic case

In the absence of magnetic field, the same methodology implies the
O(⇁)-structural equation for φ1 = ▷(y)F (ζ, τ):

(U ↑ c)
d2▷

dy2
↑ (ϑ+ U

↑↑

)▷ = 0 . (21)

A critical level will arise when c ≃ U . Otherwise, wavy solutions available
when (ϑ+ U

↑↑

)/(c↑ U) > 0 (turning level). For the uniform basic state, the
speed returns c↑ U = ϱ

n2↼2 , i.e. the long Rossby wave.

The solvability condition at O(⇁2) is then given by

ϱ3F

ϱζ3

, 1

0

▷2
-
c↑ U

.
dy ↑

ϱF

ϱτ

, 1

0

▷ ▷↑↑dy ↑ F
ϱF

ϱζ

, 1

0

▷ (▷↑▷↑↑
↑ ▷ ▷↑↑↑) dy = 0 .

(22)

Recall that the nonlinear term vanishes if U and ϑ are both uniform.



Spherical QG MHD model

We adopt a quasi-geostrophic model in cylinder (s, 1, z), where the
spherical geometry is taken into account [Jones(2015),Canet et al.(2014)].

B			U-
2H s

z
W

-
ri ro j

In the magnetostrophic regime where
Le ↓ |ωM/ωC | ↔ 1, we begin with equations
for the axial vorticity, ϖz = ẑ · (↔↗ u), and
the magnetic field, B:

↗2!
εuz

εz
=

1

ϑ
B ·→jz (23)

εB

εt
= →↑ (u↑B) (24)

and ↔ · u = ↔ ·B = 0. Boundary conditions are

uz = ↘us
s

H
at z = ±H = ±(r2o ↗ s2)1/2 (25)

us = 0 at s = ri, ro (26)

The former gives rise to the topographic beta e!ect ε = ↑2! d
ds lnH.

Assume u → ↔↗ φ(s, 1)ẑ and B → ↔↗ g(s, 1)ẑ.



Reductive perturbation method

Hereafter all dimensionless: the length and the velocity are scaled by the
radius of the outer shell, ro, and the MC speed, B2

0/(2!roςµ0), respectively.

To seek its solitary solutions for a long wave, we introduce slow variables
with a small parameter ⇁ (↘ 1):

τ = ⇁3/2t , ζ = ⇁1/2(1↑ c t) (27)

where c is a constant. We now expand the dependent variables with ⇁ as

ϖ = ϖ0(s) + ϱϖ1(ς, s, φ) + .. , g = g0(s) + ϱg1(ς, s, φ) + .. (28)

provided the basic flow and magnetic field are purely azimuthal:

↗Dϖ0 = U(s) , ↗Dg0 = B(s) (29)

where D = d/ds.



At O(ω): eigenvalue problem

Eqs. (23)-(24) at O(⇁) give a homogeneous PDE about g1:

L
εg1
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"
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1

s
D(sB)

#

+

$

U

s
↗ c

%&

εg1
ες

= 0 (30)

where the linear operator L = L(s, ϱ/ϱs,B,ε, U, c). Boundary conditions
are εg1/ες = 0 at s = 2 and 1.

Seek solutions in form of g1 = #(s)G(ζ, τ) to leave the eigenvalue problem

L# = 0 and # = 0 at s = 2, 1 . (31)

i.e. a second-order ODE. A critical level will arise wherever B
2
/ε has

zeros, but not as c ≃ U/s; cf. nonmagnetic cases. Again, seek
nonsingular solutions only.



At O(ω2): KdV equation?

We proceed to the next order to determine the amplitude function.
After some algebra, we obtain an inhomogeneous PDE for g2:
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where D2 = (1/s)DsD. Boundary conditions are ϱg2/ϱζ = 0 at s = 2 and 1.
The solvability condition is given by
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with #† being the adjoint eigenfunction. Again, this implies a Korteweg-de
Vries equation if the coe”cients are both nonzero.



Case study

We investigate the two coe”cients for di!erent basic states, provided
ε = s/(1↑ s2) and 2 = 0.35.
Solutions to the eigenvalue problem (31) at O(⇁) are found analytically in
a couple of cases. For general cases we solve this using the Matlab routine
bvp4c with a modified boundary condition #+ (1↑ s)D# = 0 at

s = 0.99999.

In the all cases we obtain nonzero ◁ and 0, i.e. valid KdV equations.

B U n c ↼ ↽

s 0 1 -9.7847 -12.854 0.87465
2 -33.2045 -14.639 1.0480
3 -70.0655 -26.422 1.1156

1/s 0 1 -21.9795 -36.930 1.2464
2 -78.0389 -31.920 2.1442
3 -167.788 -70.056 2.8417

→s s 1 -8.7847 -12.854 0.87465
→1/s s 1 -20.9795 -36.865 1.2464
→s 4s(1↑ s) 1 -8.8379 -9.5075 0.90339

→1/s 4s(1↑ s) 1 -21.4523 -35.429 1.2659
→ Cases evaluated with the routine bvp4c .



An asymptotic solution: single-soliton

The known solutions to KdV equation are solitary, cnoidal, similarity, and
rational [Drazin & Johnson(1989)].

The 1-soliton (solitary wave) solution yields our asymptotic solution, such
that

φ(s, 1, t) = ↑

, s

↽

Uds↑ ⇁ sgn(◁0)
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D
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s
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%
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where

F (1, t) =
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|◁|t

3

'
. (35)



Case 1: for Malkus field

Here is the example for B = s (Malkus field; red in figure a). Let x = 1↑ s2;
the eigenvalue problem (31) at O(⇁) is rewritten as

"

x(1↗ x)
d2

dx2
↗ x

d

dx
+ ↽

2

#

” = 0 where ↽
2 = ↗

c

4
. (36)

Found to be a hypergeometric equation (A&S Chap. 15). So with the
hypergeometric function F (a, b; c; z) =



↓

n=0
(a)n(b)n

(c)n
zn

n! , we find solutions

# = (1↑ s2)F (1 + ↼, 1↑ ↼; 2; 1↑ s2) (37)

(black dashed) and #† = !

1→s2 (black dashed-dotted). This gives ◁ ⇐ ↑12.9
and 0 ⇐ 0.875 for n = 1, i.e. a clockwise eddy (figure b).



Case 2: for wire field

When B = 1/s (electrical-wire field; red in a), the ODE (31) is reduced to
"

x(1↗ x)
d2

dx2
↗ x

d

dx
+ ↽

2(1↗ x)2
#

” = 0 , (38)

which has a solution

# = (1↑ s2)e⇀(1→s2)Hc(qc,◁c, 0c, ↽c, ⇁c; 1↑ s2) (39)

where Hc represents the confluent Heun function (DLMF Chap. 31) with
qc = ↼2 + 2↼↑ 1, ◁c = ↼2 + 3↼, 0c = 2, ↽c = 1 and ⇁c = 2↼ (black in a).
Also #† = s4

1→s2#. Now we find ◁ ⇐ ↑36.9 and 0 ⇐ 1.25 for n = 1. The
solitary wave solution is again clockwise but more compact (b).



Case 3: influence of basic zonal flow

Valid KdV equations are found in the presence of a basic zonal flow. A
linear shear, U = s, simply implies the solid body rotation; a quadratic
shear, U = 4s(1↑ s), weakens the nonlinear e!ect.

Are the solutions really right even when c ≃ U/s ? This is confirmed: we
impose an extremely fast flow, U = 80s(1↑ s), to have such a radius at
which U/s↑ c = 0 (dotted blue in a), however there are no discontinuities
in the vicinity (b and c).



Looks like the anticyclonic gyre in Earth’s core?

The solitary wave solutions supports the persistency of an isolated
anticyclone, drifting westwardly on timescales of O(102-4yrs).

COV-OBS QG core flow model: geodynamo DNS:
average over 1840-1990 average over 0.016τ⇀ → 103 yrs (or less)

[Pais et al.(2015)] low-frequency, columnar
accelerating? [Barrois et al.(2018)] [Schae!er et al.(2017)]



Summary and some remarks I

The weakly nonlinear analysis in the QG MHD/MC model indicates
slow MR waves may shape coherent structures, such as solitons

the Busse annulus model illustrates this happens when either the
basic magnetic field, topography, or mean flow varies in s

this is exemplified by the spherical analogue

the single soliton (solitary wave) solution yields an isolated,
anticyclonic eddy

it is nonsingular even when the wave speed approaches the basic
angular velocity

Potential geo-/astro-physical implications:

the eccentric gyre in Earth’s core [Pais & Jault(2008)], and then the
South Atlantic Anomaly?

the nest of convection?

a single vortex in protoplanetary discs?, Jupiter’s GBS??



Summary and some remarks II

Note that

the long waves can be destabilised through any scenarios, e.g.

di!erentially rotating flows [Schmitt et al.(2008),Nornberg et al.(2010)]

convection [Sakuraba(2002),Hori et al.(2012)]

magnetic di!usivity [Roberts & Loper(1979),Zhang et al.(2003)]

di!erent basic states (directions/morphologies) will lead to di!erent
characteristics

Open questions:

at strongly nonlinear regimes: envelop soliton, modon, etc.

DNS/initial value problems

when there is an internal singularity in B
2
/ε profile

in 3d spherical systems where the z-dependence is present

solutions to (cylindrical) KdV equations
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where U2
A = hfB2

s i/µ0h⇢i, implying a wave equation for angular velocity hu0�i/s in the anelastic case (Jault
& Finlay, 2015). Here the restoring force is represented by FLR, while the remaining terms can be summed
up to a forcing term FLD = F

0
L�FLR, as well as F 0

R. A perturbation of angular velocity can propagate in
cylindrical radius s with an Alfvén speed UA. The speed depends on the magnitude of the background
poloidal field B

2
s and the background density ⇢, both of which may vary with s. As expected for the

MHD wave, this special mode is also nondispersive, i.e. the speed independent of wavenumbers. Since the
equation allows both inward and outward propagation, a superposition of those modes, provided a similar
amplitude and proper excitation, could yield its standing waves and enable normal mode solutions. In
Earth, neverthelss, data as well as numerical simulations indicate its propagating nature, preferable to
standing ones (see sec. 1). We shall discuss below that standing TWs could be chosen in Jupiter.

3 Numerical simulations

To explore potential excitation of TW in the gas giant, we choose three Jovian dynamo models, which were
build by Jones (2014). We here overview only the essential part for the analysis shown below: see Jones
(2014) for the detailed description. The models exploit self-generation of magnetic fields by anelastic fluid
motions in rotating spherical shells, for which the equilibrium reference state calculated by French et al.
(2012) as well as viscous and di↵usion terms were taken into account. Given the reference state of density
⇢, electrical conductivity �, and temperature T , they model a metallic hydrogen region above a rocky
core, r � rc ⇡ 6.45⇥ 106m ⇡ 0.09RJ, and its continuous transition to a molecular hydrogen region. The
transition begins at around r ⇡ 0.85RJ and only the region below a cut-o↵ level, r  rcut ⇡ 6.7⇥107m ⇡

0.96RJ, is treated in our simulations. The density scale height N⇢ = ln [⇢(rc)/⇢(rcut)] between the core
boundary and the cut-o↵ radius is approximately 3.08. Convection is largely driven by a uniform entropy
source, which is likely released as the planet cools; this di↵ers from the geodynamo, which is primarily
driven by a buoyancy source arising from the inner core boundary due to its freezing. As the electrical
conductivity � drops by more than five orders across the transition radius, a thin, poorly-conducting
layer is formed at the top of the shell. Since the Proudman-Taylor constraint rules fluid motions in the
hydrodynamic layer, though it is now compressible, it produces an imaginary cylinder that attaches to
the bottom of the thin layer at the equator. We call it a magnetic tangent cylinder (MTC), located at
s ⇡ 0.9rcut ⌘ smtc, whereas the solid core forms a kinematic TC at s = rc ⌘ stc. The core leaves only a
small fraction for the inside of the TC, and so we shall concentrate on the outside, s & stc.

The chosen models and some key quantities are listed in table 1. They show the Rossby numbers Ro,
quantifying the relative strength of the inertia to the Coriolis force, no greater than 10�3. The advective
terms therefore only have a minor role, as assumed in the linear theory. The Elsasser number ⇤ measures
the ratio of the Lorentz force to the Coriolis force and amounts to 5-10 in our simulations. This would
indicate those models possibly strong-field dynamos when relying on incompressible, Boussinesq theories;
it is unclear that the scenario is applicable to anelastic fluids. Amongst the three, model I was reported
to reproduce a magnetic field that best resembled the one Juno recently found (Jones & Holme, 2017).

The magnetic fields self-generated in those runs are non-reversing dipole-dominated. They act as a
background field for MHD wave motions discussed below. Its poloidal part, Bs in cylindrical coordinate,
defines a frequency or a propagation speed of TW. In figure 1, a solid curve depicts the nondimensional
Alfvén speed, UA, as a function of cylindrical radius s for model I. Here the time and length are scaled
by the magnetic di↵usion time and the shell thickness (d = rcut � rc), respectively, and the bounds for
z-averages are taken at the rcut. In the figure, we also plot a speed UA with the density being constant
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• A special class of Alfvén waves (Braginsky 1970; details in the note) : 

– The azimuthal momentum equation integrated over 
cylindrical surfaces C = 2ps h(s) about the rotation axis:

– For incompressible fluids, the Coriolis term vanishes
– The magnetostrophic balance yields a steady state (Taylor 1963)

– Cylindrical perturbations on the state, 𝑢′! = 𝑢′! (s,t), 
can be governed by a homogeneous equation:

• with Alfvén speed UA = (< $𝐵"2>/µ0<r>)1/2

• outward (+s) and/or inward (-s) propagation, 
or standing waves, possible

• Can be excited by any mechanisms/instabilities



• Early studies explored the eigenvalue 
problem of the 1d wave equation 
(e.g. Braginsky 1970)

• Normal mode solutions to the governing 
(full) equations reveal the TO class

TO as an eigenmode
340 F. Gerick et al.

2.3 Geostrophic motions and torsional Alfvén modes

In a container of volume V that can be continuously deformed into a
sphere, such that the height of the fluid column h along the rotation
axis is a homeomorphism between the volume V and the sphere, all
contours of constant h (geostrophic contours) are closed. Examples
of such containers include the full sphere (not a spherical shell) or
ellipsoids. It is often postulated that incompressible flows in such a
container can be expanded as (e.g. Greenspan 1968)

u =
∞∑

j

γ j (t) uG, j (r⊥) +
∞∑

i

αi (t) ui (r), (10)

where uG, j (r⊥) are the (degenerate) geostrophic solutions (e.g. Liao
& Zhang 2010, in spheres) that only depend on the position perpen-
dicular to the rotation axis r⊥. They are given by the geostrophic
equilibrium

2 # × uG, j = −∇ pG, j , (11)

and their superposition is commonly referred to as the geostrophic
mode uG =

∑
j uG, j (e.g. Greenspan 1968). Additionally, ui (r)

are the spatial eigensolutions of the inertial wave equation (e.g.
Vantieghem 2014, in ellipsoids)

∂ui

∂t
+ 2 # × ui = −∇ pi . (12)

Expansion (10) has proven to be exact for the ellipsoid (Backus &
Rieutord 2017; Ivers 2017).

From balance (11) it is clear that the axial geostrophic pressure
torque vanishes, as the axial Coriolis torque vanishes for any flow u.
However, this is no longer the case when the flow is time dependent,
even if it remains mainly geostrophic (or ’pseudo-geostrophic’,
Gans 1971), such that uPG(r⊥, t) &

∑
j γ j (t) uG, j (i.e. with |γ j|

' |αi|). In the presence of a Lorentz force the pseudo-geostrophic
flow is governed by

∂uPG

∂t
= − 2

Le
1# × uPG − ∇ p + (∇ × B) × B. (13)

Using the geostrophic equilibrium (11) we substitute the Coriolis
acceleration for its pressure gradient. Additionally, rewriting the
Lorentz force in terms of the magnetic pressure gradient and the
Maxwell term, (13) takes the form

∂uPG

∂t
= −∇(pA + pm) + (B · ∇)B, (14)

with pA = p −
∑

jγ jpG, j and pm = B2/2. Besides the magnetic
pressure pm, an ageostrophic component pA remains in the pressure.
They may both exert a torque on the container if it is not spherical.

TM, also called ’torsional oscillations’ (Braginsky 1970), are ex-
amples of such pseudo-geostrophic flows. They are solutions of the
linearized eq. (4) for Le ( 1, and reduce to the ordinary geostrophic
mode in the limit Le → 0. When scaled by the reciprocal of the
Alfvén time scale TA, the TM frequencies are constant (see Fig. 1).
Their Alfvén wave nature is also evident in the ratio of kinetic en-
ergy to magnetic energy, which is O(1) as indicated by the grey
colour in Fig. 1. We define TM to have a frequency independent of
Le when Le ( 1 (if scaled by T −1

A ) and of approximately unit ratio
between kinetic and magnetic energy. These two features clearly
differentiate them from other modes present, namely the so-called
fast modes and slow modes. The fast modes are slightly modified
inertial modes, with frequencies on the order of the angular fre-
quency, and their energy is mostly kinetic (see Fig. 1, yellow dots).
The slow modes (or Magneto–Coriolis modes) have a frequency

Figure 1. Mode frequencies as a function of Lehnert number in the sphere.
The imposed magnetic field is B0 = (−y, x − z/10, x/10)T , following Vi-
dal et al. (2019). The colours indicate the ratio of kinetic energy to magnetic
energy, where yellow indicates a larger kinetic energy and blue a larger
magnetic energy. The modes are separated into slow modes, fast modes and
TM for Le ( 1.

much lower than the angular frequency and a small kinetic energy
compared to the magnetic energy (see Fig. 1, dark blue dots).

In the axisymmetric case, the geostrophic mode can be writ-
ten as uG = uG(s)1φ and a pseudo-geostrophic flow is simply
uPG & u PG(s, t)1φ (with s the cylindrical radius and φ the azimuthal
angle). The projection of the linearized momentum eq. (4a) onto the
geostrophic mode reduces to the 1-D equation

ρh
∂2u PG(s, t)

∂t2
= 1

s2

∂

∂s

(
hs3 ∂

∂s

(
u PG(s, t)

s

) ∫
B2

s dz
)

, (15)

only depending on the radial distance s to the rotation axis. Roberts
& Aurnou (2012) referred to this equation as the canonical torsional
wave equation. We refer the reader to Roberts (1972) and Jault
(2003) for details on the derivation. In the case of the ellipsoid, we
shall consider TM within the framework of a QG model retaining
ageostrophic components of the flow.

2.4 Quasi-geostrophic equation with generic geostrophic
contours

We assume that the horizontal velocity components are independent
of the coordinate z along the rotation axis, u⊥ = u⊥(r⊥, t). Together
with the non-penetration boundary condition, u · n = 0 on ∂V , the
mass continuity equation ∇ · u = 0 and the assumption of an equa-
torially symmetric volume V the QG velocity takes the form (e.g.
Bardsley 2018)

u = u⊥(r⊥, t) + uz1z = ∇ψ × ∇
( z

h

)
, (16)

with h = h(r⊥) the height of the fluid column, u⊥(r⊥, t) = 1
h ∇ψ ×

1z , uz = z
h u⊥ · ∇h and ψ = ψ(r⊥, t) a scalar stream function. By

construction, ψ is constant at the equator ∂A for the volume V
considered here. Following the boundary condition arising naturally
when h → 0 at ∂A (Maffei et al. 2017), we choose ψ = 0 on
∂A. Note that, if ψ is constant along geostrophic contours (i.e. it
is a function of h only), we recover the geostrophic velocity (see
Appendix A).

To derive an evolution equation for this scalar stream function,
we project the momentum eq. (4a) onto the subset u′ of QG ve-
locities (16) following Labbé et al. (2015) and Bardsley (2018).
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(a) Three branches of normal modes
For axisymmetric perturbations, three distinct branches of normal modes are supported by the
hydrodynamic system. To show the distribution of the normal modes’ frequencies and decay
rates, we first compute the whole eigen-spectrum for two relatively low resolutions, L = 30 and
L = 40, with Le = 10−4 and Lu = 2/Le = 2 × 104, shown in figure 3. Some of the spectrum shown
are spurious eigenvalues, which are not converged modes and of little physical meaning [42]. The
upper left branch with generally stronger decay rates compared to frequencies is known to be the
slow MC branch, while those on the bottom right corner are the fast slightly modified inertial
modes with frequencies at O(Le−1) that experience little damping from magnetic diffusion.
The middle branch with frequencies ranging from O(1) to O(10) are found to be TO normal
modes. They have quality factors Q ranging from O(10) to O(100). These torsional modes are
not fully converged at this low resolution as we shall see below; nevertheless figure 3 shows a
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Lu is fixed to be 2/Le, the mode structure is also dependent on Le. One the other hand, the S2
fundamental mode has only weak dependence on the near-axis region, thus independence of Le
(Lu) is observed. In the right-hand column of figure 5, we plot the first six TO normal modes
for S1 and S2 at Le = 10−3. All six modes from S1 are localized near the rotation axis. For S2, the
first three modes are dominantly near the equator while modes 4–6 switch to S1 type behaviour,
namely being strong near the axis. This can be explained by the order of the singularity of the
solution to the ideal canonical equation (1.1). The relation between ω and V′

A(0) determines the
order of the singularity of ζ at s = 0; see [11] and appendix B for more details. All modes of S1 and
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TO for a given poloidal field
(Liu & Jackson, Proc. R. Soc. A 2022)



from the tangent cylinder to the Equator. Such fast propagation is
made possible by a large magnetic field inside the core, of amplitude
several millitesla. At large cylindrical radii, in the Equatorial region,
the propagation slows down. In a torsional wave scenario, that obser-
vation is consistent with a weaker field close to the Equator.
Furthermore, the absence of a reflected wave suggests the presence
of significant Ohmic dissipation. This is due either to large gradients
of the induced magnetic field, resulting from inhomogeneities in the
Alfvén wave velocity, or to the presence of a conducting layer at the
base of the lower mantle19. We have explored this second hypothesis.

The ensemble average of the filtered zonal flow coefficients are now
considered as observations for a second inversion. To obtain not only
the strength but also the profile of ~BBs sð Þ, we use a variational data
assimilation framework20,21 that rests on the torsional wave equation
outside the tangent cylinder19:

L2vg

Lt2
~

1

s3hrm0

L
Ls

s3h~BB2
s sð Þ

Lvg

Ls

! "
{

cG~BB2
r

h2r

Lvg

Lt
ð1Þ

The last term represents magnetic friction at the core–mantle boundary
(CMB) in the presence of a conducting layer at the bottom of the
mantle, of conductance G. The squared radial magnetic field at the

CMB, ~BB2
r sð Þ~ 1

4p

Ð 2p
0 B2

r s, w, hð ÞzB2
r s, w, {hð Þ

$ %
dw, is chosen to

be uniform for the sake of simplicity. We control, using the variational

approach, the profile ~BBs sð Þ, the product G~BB2
r and the torque C on the

tangent cylinder (see Methods). Figure 3 illustrates one solution
example: the time–radius map of the predicted velocity (Fig. 3b) com-
pares well with that of the observations (Fig. 3a). Furthermore, the
predicted velocity explains the observed six-year DLOD changes well
(Fig. 2a), the amplitude of which, at about 0.2 ms, corresponds in turn
to C < 2 3 1017 N m.

Figure 4 displays the dispersion of the acceptable solutions (see
Supplementary Information) in terms of profiles of ~BBs sð Þ. They all
require ~BBs to be larger than 2–3 mT in most of the outer core, except
towards the Equator, where it decreases towards intensities consist-
ent with the fraction of a millitesla obtained at the CMB. At radii
between 0.4c and 0.8c, we find a wide range of acceptable amplitudes:

we thus provide only a lower bound for the field intensity in that
region. Our findings are in line with estimates (1) inferred from
quasi-geostrophic core-flow inversions assuming a magnetostrophic
balance6, (2) deduced from numerical geodynamo models1, and (3)
required to explain core nutations22. Having an internal field as
strong as 5 mT r.m.s. is compatible with magnetic dissipation con-
siderations23. In addition, because the torsional waves are interannual
rather than decadal, concerns raised about excessive damping at the
CMB24 do not apply.

Acceptable solutions show 30ƒG~BB2
r ƒ140 S T2, with median

value 70 S T2. For ~BBr~0:7 mT at the CMB22 (see Fig. 4), this yields
a conductance G g [0.6, 2.8] 3 108 S, with a median value of
1.4 3 108 S. If it seems large compared to recent results from
lower-mantle mineral physics25, it is nevertheless not in conflict with
studies of electromagnetic induction in the Earth’s mantle. A six-year
signal probes the entire thickness D of the conducting layer at the
bottom of the mantle, of conductivity smantle 5 G/D. For a value of
smantle ten times smaller than the outer core conductivity
score < 5 3 105 S m21, this yields a thickness of D < 3 km, whereas
for a value of smantle similar to score, it yields a thickness D < 300 m.
That estimate is compatible with the one obtained from the analysis
of the daily nutations22 only if a marginal quantity of electrically
conducting material lies outside the layer probed by nutations, of
thickness d < 200 m for smantle < score. The magnetic torque at the
CMB, together with the torque C at the tangent cylinder, balance time
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Figure 1 | High coherence is found not only on long timescales, but also on
an approximately six-year period. Coherence (a) and phase (b) spectra are
calculated over the time span 1925–1990 for the DLOD time series
LUNAR97 (ref. 13) and the predictions from the average of an ensemble of
quasi-geostrophic core flow models (see Supplementary Information).
Green segments correspond to frequency ranges over which the phase shift is
smaller than 30u.
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eight years, of the LUNAR97 data13 (green), the predictions from the
ensemble average of the quasi-geostrophic core flow models (black), and the
result (red) of the torsional wave assimilation of the flow coefficients
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$ %

n~1,3,...,9
for 1960–1982 (see Supplementary Information). b, Time

versus cylindrical radius map of the band-pass filtered angular velocity
ũg(s, t) for the ensemble average of the quasi-geostrophic core flow model.
Distance is in outer core radius units. The colour scale ranges between
20.4 km yr21 (blue) and 10.4 km yr21 (yellow) with contours every
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position of the tangent cylinder. The black box corresponds to the space-
time domain used for the assimilation of torsional waves (Fig. 3).
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Some history.. 
• Proposed to account for ~60 yr geomag

SV and/or the core flow (e.g. Braginsky 1970;      
Zatman & Bloxham 1997) 
– in terms of normal mode solutions, i.e.    

standing form
– to infer the field strength of < !𝐵!2>1/2 ≥ 0.3 mT

• too weak? (e.g. scaling laws; Christensen & 
Aubert 2006) 

• to attempt the inversion (Buffett et al. 2009)

• for another signal of 4-9 years (Gillet et al)

– implying the strength of < !𝐵!2>1/2 ≥ 2 mT
– in core flow models inverted from geomag SV

• compatible with ~6yr variation in the    
rotation rate (length-of-day) variations too 

• strong filter; unclear geomag signals 

– more likely travelling to the equator 

Torsional waves in Earth’s fluid core
Axisymmetric zonal velocity 𝑢′!

in a core flow (gufm; Gillet et al. 2010)
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changes of the core angular momentum. We are in the presence of
forced torsional waves24, the triggering mechanism of which remains
to be understood. Assuming that the geostrophic velocity at s 5 0.35c
does not differ much from the angular rotation of the solid inner
core, only a tiny inner core oscillation is predicted from our study, of
the order of 1022 degrees per year. Although it is difficult to detect
from seismological studies26, this quasi-harmonic signal could con-
stitute a target on which to focus.

In a scenario where they are responsible for the six-yearDLOD signal,
torsional Alfvén waves no longer explain the decadal to centennial
DLOD, as was previously thought3,4,16. Hence, such changes remain to
be understood. For these periods that are longer than the Alfvén time,
we envision a magnetic field B inside the core, constantly evolving under
Taylor’s constraint27. One consequence is that geostrophic (zonal) and
ageostrophic (non-zonal) motions are coupled: the zonal/non-zonal
anisotropy observed in non-magnetic quasi-geostrophic turbulence28

is thus unlikely to affect large length-scale flow structures in the Earth’s
core. Any long-term change in the non-zonal velocity and magnetic
fields would entail changes in geostrophic velocities and in the core
angular momentum. Finally, the short travel time of the torsional waves
in the core interior may explain the occurrence of rapid interannual
flow variations, as inferred from satellite data29 and the suddenness of
geomagnetic jerks. Indeed, Alfvén torsional waves can rapidly transport
a perturbation occurring in the core interior.

Detection of fast torsional oscillations helps us to develop a better
physical understanding of geomagnetic variations and reconcile
numerical geodynamo models with geomagnetic observations. In addi-
tion, better knowledge of core angular momentum changes in a wider
spectral range will also result in a better description of angular
momentum changes in the outer geophysical envelopes (oceans, ice
caps, atmosphere) on interannual timescales. The assimilation tech-
nique21 applied in our study is well-suited to the analysis of long data
series. However, recent high-quality satellite data cover only a short
period compared to the time taken by the physical processes responsible
for the geomagnetic secular variation. We must overcome difficulties
met when merging together data of very different quality. This can be
achieved by propagating the information contained in satellite data20

backward in time, using the data to come soon from the European
Space Agency’s Swarm mission30. This goal is a strong incentive for
developing dynamical models of the evolution of core flows, which
include the torsional waves we have focused on here.

METHODS SUMMARY
We first perform an ensemble inversion6 of quasi-geostrophic core flows7 from
the geomagnetic field model gufm112, over the time span 1840–1990. A good
coherence is found between the DLOD data LUNAR97 (ref. 13) and its predic-
tions from the ensemble average of core flow models, in a period range of around
six years. The ensemble average of the spherical harmonics zonal flow coeffi-
cients, filtered around this period, are used as data in a dynamical inversion of
torsional waves over 1960–1982. To retrieve the profile ~BBs sð Þ, the conductance G
at the base of the mantle and the torque C applied on the tangent cylinder, we use
a variational data assimilation framework21, for which we derive error estimates
from the dispersion in the ensemble of flow solutions. Introducing an auxiliary
variable t, we separate the second-order differential equation (1) for torsional
waves into two first-order differential equations:

Lvg

Lt
~

1

s3hrm0

Lt

Ls
{

cG~BB2
r

h2r
vg

Lt

Lt
~ s3h exp F sð Þ½ $

Lvg

Ls

8
>>><

>>>:
ð2Þ

Thepositivityof ~BB2
s isensuredbyusingF sð Þ~ ln ~BB2

s sð Þ
! "

(ref.21).Twoboundary

conditionsarerequired:wechooset souter, tð Þ~ s2
outer

4p

Ð 2p
0

Ðzh souterð Þ
{h souterð Þ BsBwdzdw ~ 0,

and C(t) 5 Acos(ct 1 Q). This prevents the predicted velocity from being influenced
too much by the blurred image of the core state that results from the ensemble
inversion.Theinversionissensitiveonlytolarge length-scalepatternsofageostrophic
flow likely to exhibit a complex radial structure4. We seek control vectors
x~ F sð Þ, G~BB2

r , A, c, Q
$ %

minimizing a cost function:

J xð Þ~M2zaB

ðsouter

sinner

L2F

Ls2

' (2

dszaG G~BB2
r

! "2 ð3Þ

The first term measures the misfit between data and predictions (see the
Supplementary Information for more on error covariances, data and the forward
operator). The last two terms are regularizations for the phase speed of Alfvén
waves and their dissipation, respectively, with aB and aG the associated damping
parameters. By systematically exploring the parameter space (aB, aG), we obtain a
range of acceptable solutions adequately fitting the data within the error bars.
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Figure 3 | Torsional Alfvén waves can account for the six-year geostrophic
oscillation. Time–cylindrical radius map of the bandpass-filtered angular
velocity ũg(s, t). The colour scale ranges between 20.4 km yr21 (blue) and
10.4 km yr21 (yellow) with contours every 0.02 km yr21. a, Filtered
ensemble average. As inside the black box in Fig. 2b (outside the tangent
cylinder for 1960–1982) but truncated at spherical harmonic degree n 5 9.
This corresponds to the observation ~uuobs

g s, tð Þ used for the data assimilation.
b, Assimilation output (n ( 9). Predictions ~uupred

g s, tð Þ resulting from the
torsional wave assimilation of the ~ttobs

n0 tð Þ
$ %

n~1,3,...,9
for damping parameters

(aG, aB) 5 (100, 3 3 1027), with a normalized misfit of 0.87 (see
Supplementary Information for details).
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$ %
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Methods and the Supplementary Information for details).
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from the tangent cylinder to the Equator. Such fast propagation is
made possible by a large magnetic field inside the core, of amplitude
several millitesla. At large cylindrical radii, in the Equatorial region,
the propagation slows down. In a torsional wave scenario, that obser-
vation is consistent with a weaker field close to the Equator.
Furthermore, the absence of a reflected wave suggests the presence
of significant Ohmic dissipation. This is due either to large gradients
of the induced magnetic field, resulting from inhomogeneities in the
Alfvén wave velocity, or to the presence of a conducting layer at the
base of the lower mantle19. We have explored this second hypothesis.

The ensemble average of the filtered zonal flow coefficients are now
considered as observations for a second inversion. To obtain not only
the strength but also the profile of ~BBs sð Þ, we use a variational data
assimilation framework20,21 that rests on the torsional wave equation
outside the tangent cylinder19:
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The last term represents magnetic friction at the core–mantle boundary
(CMB) in the presence of a conducting layer at the bottom of the
mantle, of conductance G. The squared radial magnetic field at the

CMB, ~BB2
r sð Þ~ 1

4p

Ð 2p
0 B2

r s, w, hð ÞzB2
r s, w, {hð Þ

$ %
dw, is chosen to

be uniform for the sake of simplicity. We control, using the variational

approach, the profile ~BBs sð Þ, the product G~BB2
r and the torque C on the

tangent cylinder (see Methods). Figure 3 illustrates one solution
example: the time–radius map of the predicted velocity (Fig. 3b) com-
pares well with that of the observations (Fig. 3a). Furthermore, the
predicted velocity explains the observed six-year DLOD changes well
(Fig. 2a), the amplitude of which, at about 0.2 ms, corresponds in turn
to C < 2 3 1017 N m.

Figure 4 displays the dispersion of the acceptable solutions (see
Supplementary Information) in terms of profiles of ~BBs sð Þ. They all
require ~BBs to be larger than 2–3 mT in most of the outer core, except
towards the Equator, where it decreases towards intensities consist-
ent with the fraction of a millitesla obtained at the CMB. At radii
between 0.4c and 0.8c, we find a wide range of acceptable amplitudes:

we thus provide only a lower bound for the field intensity in that
region. Our findings are in line with estimates (1) inferred from
quasi-geostrophic core-flow inversions assuming a magnetostrophic
balance6, (2) deduced from numerical geodynamo models1, and (3)
required to explain core nutations22. Having an internal field as
strong as 5 mT r.m.s. is compatible with magnetic dissipation con-
siderations23. In addition, because the torsional waves are interannual
rather than decadal, concerns raised about excessive damping at the
CMB24 do not apply.

Acceptable solutions show 30ƒG~BB2
r ƒ140 S T2, with median

value 70 S T2. For ~BBr~0:7 mT at the CMB22 (see Fig. 4), this yields
a conductance G g [0.6, 2.8] 3 108 S, with a median value of
1.4 3 108 S. If it seems large compared to recent results from
lower-mantle mineral physics25, it is nevertheless not in conflict with
studies of electromagnetic induction in the Earth’s mantle. A six-year
signal probes the entire thickness D of the conducting layer at the
bottom of the mantle, of conductivity smantle 5 G/D. For a value of
smantle ten times smaller than the outer core conductivity
score < 5 3 105 S m21, this yields a thickness of D < 3 km, whereas
for a value of smantle similar to score, it yields a thickness D < 300 m.
That estimate is compatible with the one obtained from the analysis
of the daily nutations22 only if a marginal quantity of electrically
conducting material lies outside the layer probed by nutations, of
thickness d < 200 m for smantle < score. The magnetic torque at the
CMB, together with the torque C at the tangent cylinder, balance time
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Some history.. 
• Proposed to account for ~60 yr geomag

SV and/or the core flow (e.g. Braginsky 1970;      
Zatman & Bloxham 1997) 
– in terms of normal mode solutions, i.e.    

standing form
– to infer the field strength of < !𝐵!2>1/2 ≥ 0.3 mT

• too weak? (e.g. scaling laws; Christensen & 
Aubert 2006) 

• to attempt the inversion (Buffett et al. 2009)

• for another signal of 4-9 years (Gillet et al)

– implying the strength of < !𝐵!2>1/2 ≥ 2 mT
– in core flow models inverted from geomag SV

• compatible with ~6yr variation in the    
rotation rate (length-of-day) variations too 

• strong filter; unclear geomag signals 

– more likely travelling to the equator 

Torsional waves in Earth’s fluid core
Axisymmetric zonal velocity 𝑢′!

in a core flow (gufm; Gillet et al. 2010)

C
yl

in
dr

ic
al

 ra
di

us
  s

 /r
co

re

ICB

CMB

Year

Year

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011786

Figure 9. Ratio Z∕NZ between the power spectral densities (PSD) for
the zonal and nonzonal flows as a function of period. In bold black line
the ratio for the ensemble average of flow solutions. In bold grey the
average ratio over the ensemble members (thin grey line: ±1 standard
deviation). Flows are truncated at degree ! = 14.

decadally varying signal and a 5.9 year
oscillation of almost constant amplitude
(compare their Figure 2 with our Figure 8,
bottom). In our opinion, the relatively
small amplitude of the oscillation (in com-
parison with that of decadal changes)
makes it difficult to decide whether it is
long standing or heavily damped. Figure 8
(bottom) displays all the LOD changes
produced by geostrophic flows in the fre-
quency range [4–9.5] years. They need
not all be attributed to the propagation of
torsional waves. In any case, the remark-
able agreement between our predictions
and the geodetic data encourages us
in the interpretation of the flow model
down to periods about 4 years.

Geostrophic motions appear very clear
over 1995–2010, particularly as the tor-
sional wave approaches the equator, at
latitudes below 40∘, with a node of the

waveform at about 10∘ latitude (see Figure 10, bottom). The amplitude of the motions in this region is signif-
icantly larger than the spread in the flow ensemble (even at earlier epochs), yet the better resolution of the
field model at recent epochs may have increased the sensitivity in the relatively small (in latitudinal extent)
equatorial area. We confirm the slower propagation inferred by Gillet et al. [2010] as the wave gets closer to
the equator and find no evidence for reflection at the equator.

Now the theory of “magnetostrophic dynamos” [see, e.g., Roberts and Wu, 2015], which has been devel-
oped to account for the Earth’s magnetic field, gives us a tool to interpret the ratio Z∕NZ as a function
of frequency. We note above that this ratio remains small and does not vary much for periods larger than
8 years (see Figure 9). Taylor [1963] demonstrated that in the absence of inertia and viscosity we have

Figure 10. Ensemble mean of the geostrophic flow (in km/yr),
band-pass filtered between 4 and 9.5 years, as a function of time. The
black line correspond to 10∘ latitude. (top) The grey lines correspond to
Alfvén velocities C based on a r.m.s. cylindrical magnetic field of 1.9
and 0.6 mT in regions respectively close to the inner core and close to
the equator. Bottom pannel: Y axis increments are proportional to the
surface between s and s + !s (dY ∝ sin "d" ⇒ Y ∝ 1 − cos ").

∀s,∫Σ(s)
1# ⋅ ((∇ × B) × B)dΣ = 0 , (27)

with Σ(s) the geostrophic cylinders (see
Roberts and Aurnou [2012] or Jault and
Finlay [2015] for modern accounts of Tay-
lor’s theory). Differentiating in time (27)
and substituting $B∕$t with its expres-
sion from the induction equation

$B
$t

= ∇ × (u × B) + %∇2B , (28)

Taylor [1963] obtained a linear relation-
ship between the geostrophic zonal flow
uG and nongeostrophic motions uNG,
which depends on the magnetic field
inside the core (see his equation (4.5); % is
the magnetic diffusivity),

1
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(cov-obs; Gillet et al. 2015)
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oped to account for the Earth’s magnetic field, gives us a tool to interpret the ratio Z∕NZ as a function
of frequency. We note above that this ratio remains small and does not vary much for periods larger than
8 years (see Figure 9). Taylor [1963] demonstrated that in the absence of inertia and viscosity we have

Figure 10. Ensemble mean of the geostrophic flow (in km/yr),
band-pass filtered between 4 and 9.5 years, as a function of time. The
black line correspond to 10∘ latitude. (top) The grey lines correspond to
Alfvén velocities C based on a r.m.s. cylindrical magnetic field of 1.9
and 0.6 mT in regions respectively close to the inner core and close to
the equator. Bottom pannel: Y axis increments are proportional to the
surface between s and s + !s (dY ∝ sin "d" ⇒ Y ∝ 1 − cos ").

∀s,∫Σ(s)
1# ⋅ ((∇ × B) × B)dΣ = 0 , (27)

with Σ(s) the geostrophic cylinders (see
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Finlay [2015] for modern accounts of Tay-
lor’s theory). Differentiating in time (27)
and substituting $B∕$t with its expres-
sion from the induction equation

$B
$t = ∇ × (u × B) + %∇2B , (28)

Taylor [1963] obtained a linear relation-
ship between the geostrophic zonal flow
uG and nongeostrophic motions uNG,
which depends on the magnetic field
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• DMD over [𝑢&′, 𝜕𝑏'′/𝜕𝑡] revealed
– ~6 yr signals comprising of tiny 

but wavy (high Q) components
• fit with CFF field $𝐵" of <3.9 mT

– their reconstruction reproduces the TO 
nature reported in uf, while visualising the 
magnetic SV of magnitude < 1%

Revisiting geomagnetic data

DMD of axisymmetric uf’ & Bs’ 
(cov-obs2019 for m = 0; 

KH, Nilsson & Tobias, RMPP 2023)
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2.4  Torsional oscillations in Jupiter

Given the presence of torsional waves in Earth’s fluid core, one might expect to 
find them in other planets. Indeed the potential for their discovery has been grow-
ing as planetary exploration and numerical modelling advance. Modern numerical 
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Fig. 5  DMD analysis of axisymmetric geomagnetic secular variation and core flow in 1940–2005 (pro-
duced from Gillet et! al. (2019)). a Spectral and b dispersion diagrams of the dataset comprising of 
u 
𝜙
(𝜃, t) and 𝜕Bs 𝜕t(𝜃, t) . Periods are represented in years on the top of each panel. Symbols highlighted 

in color indicate Modes in a window of period 5.5  7.5 years (shaded region). Individual Modes in the 
window are highlighted by different colors and symbols: we refer to the red and blue asterisks as Modes 
1 and 2, respectively, whilst the magenta and green crosses represent dissipative modes. The vertical 
dashed-dotted line labelled by Ti indicates the frequency of the i-th TW normal mode for a background 
field   B2

s
⟩1 2 ≲ 3.9 mT (see figure A1a). One Mode found in the vicinity of the T2 line is also indicated in 

cyan and is referred to as Mode 3. c Latitudinal structures of u′
𝜙

 for Modes 1 (red), 2 (blue), and 3 (cyan) 
are represented with respect to s rcore . Solid (dashed) curves show its profile in the northern (southern) 
hemisphere. d–e Reconstructed spatiotemporal structure of u′

𝜙
 for the superposition of Modes 1–3. f–g 

Similar to figures!d–e but of 𝜕Bs 𝜕t . In d,f northern and e, g southern hemispheres

• DMD over [𝑢&′, 𝜕𝑏'′/𝜕𝑡] revealed
– ~6 yr signals comprising of tiny 

but wavy (high Q) components
• fit with CFF field $𝐵" of <3.9 mT

– their reconstruction reproduces the TO 
nature reported in uf, while visualising the 
magnetic SV of magnitude < 1%

Revisiting geomagnetic data
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• Geodynamo/magnetoconvection  
simulations support its excitation      
& travelling nature (e.g. Wicht & Christensen 
2010; Teed et al. 2014; Schaeffer et al. 2017) 

– no clear reflection, no standing 
‘oscillations’
• too strong dissipation around CMB?
• too viscous?
• dispersive in the spherical cavity? 

• Lab experiments also? (Nataf et al.)

Torsional waves in DNS

Turbulent geodynamo simulations 21

Figure 21. Space–time diagram of z-averaged zonal flow uφ showing torsional wave propagation outside the tangent cylinder in the simulation S2 (E = 10−7,
Pm = 0.1). Inside the tangent cylinder (marked by the horizontal grey line at s = ri), the flow is averaged in the Northern hemisphere only. Bottom panel
continues the top one. The magenta curve is the signature of a propagation at the expected torsional Alfvén wave speed.

Figure 22. Left: rms value of the cylindrical radial magnetic field (averaged over z and φ) in S2, which is proportional to the torsional Alfvén wave propagation
speed Va. The blue and red thick curves show the time-average on the first half of the time-series (low field) and the second half (high field). Right: magnetic
field fluctuation levels averaged in longitude and time in S2 (Elsasser units).

in state-of-the-art dynamo simulations 
(Schaeffer et al. 2017)
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Figure 2 | Torsional wave signal. Colour density plot of the azimuthal fluctuating velocity, u0
�,

averaged over depth, z, and azimuth, �. The repeating blue and red pattern shows a train of waves

propagating in time in the radial direction. Waves clearly originate at the TC (indicated in s-space

by the horizontal black dashed line) and travel in the region of the core outside the TC (s >

1,200km) towards the mantle at s = 3,400km. The point of excitation is just inside the TC where

1,000km < s < 1,200km.

10

in magnetoconvection simulation 
(no filters; Teed, Jones & Tobias, GJI 2019)

ICB

CMB
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Figure 6. Time-cylindrical radius maps ζ (s, t) for the first four eigenmodes (omitting the mode with zero frequency) superimposed with curves τ (s) for
Q = 0.5 (top four panels) and Q = 0.02 (bottom four panels). Alfvén velocity model is VA2. Time is in TA units. In each case, the colour map is saturated at
max {ζ (s, t)}/2.

with Ek(t) = 2π
∫ 1

si
s3h(s)ζ (s, t)2ds and $t the considered time-

span. From expressions (27) we build the diagnostic

χ =
√

L̃2/Ẽk . (28)

Fig. 9 shows χ as a function of Q for motions bandpass filtered
at periods T ∈ [0.5, 1.2] TA and T ∈ [0.5, 0.9] TA (the former
corresponding to the range of periods considered in Gillet et al.

2015). We verify that the efficiency of the EM torque, which is null
at Q = 0, increases monotonically with Q for Q < 1. For Q > 1, χ

is much sensitive to the considered frequency band: it saturates as
we focus the filter around the first eigenperiod, in agreement with
estimates for ωi obtained for solutions to the eigenvalue problem
(see Fig. 5, bottom). We verify in Fig. 9 that χ is only weakly
sensitive to our choice for the radial field at the CMB. Whether or
not the profile B2

r (s) vanishes inside the domain, similar values of

Downloaded from https://academic.oup.com/gji/article-abstract/210/3/1503/3860087
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• Excitation mechanisms
– normal modes to be damped at CMB

• in the presence of a conducting material 
at the bottom of the rocky mantle

• a reflection rate: 

• with the conductance G = ∫#$
% 𝜎m 𝑑𝑥 , 

conductivity 𝜎m , and thickness 𝛿

– resonately launced at depth, in the 
vicinity of ICB

– (forced)

• The conditions

• (LoD variation)
• magnetic SV

Some more discussions
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Figure 6. Time-cylindrical radius maps ζ (s, t) for the first four eigenmodes (omitting the mode with zero frequency) superimposed with curves τ (s) for
Q = 0.5 (top four panels) and Q = 0.02 (bottom four panels). Alfvén velocity model is VA2. Time is in TA units. In each case, the colour map is saturated at
max {ζ (s, t)}/2.

with Ek(t) = 2π
∫ 1

si
s3h(s)ζ (s, t)2ds and $t the considered time-

span. From expressions (27) we build the diagnostic

χ =
√

L̃2/Ẽk . (28)

Fig. 9 shows χ as a function of Q for motions bandpass filtered
at periods T ∈ [0.5, 1.2] TA and T ∈ [0.5, 0.9] TA (the former
corresponding to the range of periods considered in Gillet et al.

2015). We verify that the efficiency of the EM torque, which is null
at Q = 0, increases monotonically with Q for Q < 1. For Q > 1, χ

is much sensitive to the considered frequency band: it saturates as
we focus the filter around the first eigenperiod, in agreement with
estimates for ωi obtained for solutions to the eigenvalue problem
(see Fig. 5, bottom). We verify in Fig. 9 that χ is only weakly
sensitive to our choice for the radial field at the CMB. Whether or
not the profile B2

r (s) vanishes inside the domain, similar values of
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For Q = G B0(µ 𝜌)1/2 = 0.02

For Q = 0.5

(IVP; Gillet et al. 2017)
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Figure 2. Evolution of the energy of the incoming (blue) and reflected (green) pulses as a function of time in spherical
shell simulations for Pm=10−3, E=10−10, and S≃104. Reflection occurs at about t = 400. There is no reflected pulse
when the conductivity of the solid layer is such that Q=1.

theoretical prediction (2) obtained from the study of one-dimensional Alfvén waves hitting a wall at S → ∞.
The agreement is especially good for Q ∼ 1 as shown in Figure 3.

3. Discussion

In our study, we have used a simple magnetic field, with almost uniform strength and for parameters that have
not been reached previously E = !∕r2

0Ω = 10−10 and Pm = 10−3. In addition, we have considered a uniform
conductivity in the lowermost mantle together with a magnetic field independent of the longitude.

In this framework, attenuation of the torsional Alfvén waves that reach the equator is maximized in the vicinity
of Q = 1, which makes this value special for the study of torsional Alfvén modes. However, we do not know
yet whether Q<1, Q=1 or Q> 1 at the Earth’s core equator since the electrical conductivity of the lowermost
mantle remains poorly known. We find interesting to draw attention to the case Q> 1, for which we obtain
results that may first appear counterintuitive. For Q=1, the reflection coefficient at the equator changes sign.
Accordingly, the waves reflected at s = 1 have exactly zero amplitude for Q=1 while, as Q is further increased
above 1, there is more and more angular momentum deposited in the mantle although there is less and
less ohmic dissipation. The latter is not a monotonous function of the strength of the core-mantle magnetic
coupling contrary to what had been previously accepted [Dumberry and Mound, 2008].

Finally, we better understand how monitoring the geostrophic motions in the Earth’s core together with
the subdecadal changes in the length of the day may constrain Q at the core equator and, as a result, the

Figure 3. Reflection of torsional Alfvén waves in spherical shell numerical simulations (Pm=10−3, E=10−10, S ≃ 104).
Red dots are the measured reflected energy ratio R2 in the simulations. The blue line is the exact plane-wave theory
(with R depending on the wavelength), while the black dashed line is the thin layer approximation (which does not
depend on the wavelength).
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for an insulating wall. With two-dimensional numerical simulations, they showed that the one-dimensional
plane wave theory is a useful guide for torsional waves in the spherical geometry of the Earth’s core, although
there are some differences. Hence, they argued that in the case of most geodynamo simulations, which have
been performed with Pm ∼ 1, there is no significant reflection of torsional Alfvén waves. However, this effect
cannot explain the propagation pattern of geostrophic motions inferred by Gillet et al. [2010] as Pm is about
10−6 in the Earth’s core. Here we show that the value of Pm becomes unimportant in the presence of an elec-
trically conducting layer at the bottom of the mantle. The reflection coefficient at the equator depends on
Q+

√
Pm, where the dimensionless number Q varies linearly with the conductance G of the mantle. It is likely

that
√

Pm ≪ Q in the geophysical situation. We can thus interpret the propagation pattern of geostrophic
motions in terms of poor reflection on the conducting mantle at the equator instead of magnetic damping
distributed throughout the core. Our estimate of the conductance G that corresponds to poor reflection is
about the same as the preferred value of Gillet et al. [2010].

The paper is organized as follows. We first combine, in section 2, a theoretical study in planar geometry—
where a vertical wall models the core-mantle boundary next to the equator—with a discussion of axisymmet-
ric numerical simulations in spherical geometry. We find that the reflection coefficient is correctly estimated
from the study of a one-dimensional Alfvén wave hitting a conducting wall. Section 3 is devoted to a discus-
sion of the geophysical case. Energy dissipation in the equatorial region is a nonmonotonous function of the
mantle electrical conductivity. Accordingly, torsional waves may propagate almost unhindered by magnetic
friction in the core volume and yet be almost fully absorbed at the equator.

2. Reflection of Torsional Waves at the Outer Core Equator
2.1. Plane Wave Theory
Using a plane wave approach, we can derive analytically the reflection of one-dimensional Alfvén waves
propagating in the half-space 0<x on a conducting wall at x=0 (see the detailed calculation in Appendix A):

R ≃ 1 − Q −
√

Pm

1 + Q +
√

Pm
, (2)

with

Q =
√

"0

#
G B , Pm = $

%
, (3)

B the magnetic field perpendicular to the wall, # the fluid density, $ its kinematic viscosity, % its magnetic
diffusivity,"0 the magnetic permeability of free space, and G the conductance of the solid region (−& ≤ x ≤ 0):

G = ∫
0

−&
'(x)dx . (4)

To obtain (2), we have assumed that the electromagnetic skin depth in the solid domain is larger than the
conducting layer thickness (low-frequency approximation), in which case R is a real number. In the limit of
small Pm, which is relevant for liquid metals, no reflection occurs when Q ≃ 1.

Plotting R as a function of G for Earth-like values of B = 7×10−4 T, # = 104 kg/m3, and Pm = 10−6, we find that
the reflected energy is close to zero for a solid conducting layer next to the fluid with a conductance of
G ≃ 108 S, as seen in Figure 1.

The parameters Pm and Q determine where energy dissipation takes place (see Appendix B). Whatever the
value of Pm, there is always equal dissipation of magnetic and kinetic energy within the Hartmann boundary
layer. The ratio of dissipation in the solid wall and in this fluid layer scales as Q∕2

√
Pm although the dissipation

in the wall,

Q(1 + R)2 = 4Q

(1 + Q +
√

Pm)2
, (5)

vanishes in the limit Q → ∞. In this limit, which corresponds to R = −1, there is maximal exchange of momen-
tum between the fluid and the solid at each reflection but no dissipation. The value of Q∕

√
Pm establishes
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In other planets?  e.g. Jupiter

• A prototype of gaseous planets
– has the strong, global magnetic field
– generated in the metallic hydrogen region 

• the “dynamo” region likely spans close to   
the surface,  < 0.8-0.9 Rjup

• cf. in the Earth, < 0.55 Rearth

• In the Juno era (2016-now):
– orbiting at closest levels to a planetary 

dynamo
– pre:  strong, predominantly axial dipole   

(n ≲ 4), secular variation?
– post:  localised patches incl. “GBS”            

(n ≥ 30), first secular variation in other 
planets, etc. 

– through any oscillations/waves

JRM33: n <=18 , B
r
 at ~0.85R
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heavies as one goes inward toward the center and could then be the outcome of an accretion
process that tends to put heavy elements near the center of the planet in a way that creates a stable
compositional gradient, not because the heavies are more dense but because the ratio of the !ux
of accreting gas to the !ux of accreting solids (i.e., heavy elements) increases as time passes in
the planet formation epoch. This is the picture favored by Helled & Stevenson (2017). This must
not be confused with the atmospheric enrichment discussed above, which presumably arose from
even later accretion that was Rayleigh–Taylor unstable (i.e., the accretion of dense solids onto a
hydrogen-rich envelope).

Figure 4 suggests a currently favored picture for the interior of Jupiter. Note the lack of any
sharp boundaries in composition or material properties with depth.

M
olecular 

hydrogen shell

M
etallic m

antle

(sea of electrons and protons)

D
iluted core

(concentration of heavy elem
ents)

Helium rain clouds

Outer atmosphere

Weakly conducting layer

Highly conducting layer

Deep atmosphere

Silicate
droplets

  Earth’s
radius

Figure 4
A current view of the interior of Jupiter. From the outside inward, we encounter ammonia cirrus at less than
one bar of pressure (the observable aspect of Jupiter in the visible), water clouds at tens of bars, and silicate
clouds presumed at tens of kilobars. At ∼3,000 km, less than 5% of the radius, the temperature is thousands
of degrees and the conductivity of molecular hydrogen is similar to that of salty water (1 S/m). Helium phase
separates as the hydrogen approaches metallization (pressure not known but plausibly 1–3 Mb). A diluted
core (heavy elements mixed nonuniformly with hydrogen and helium) is present deeper still.

478 Stevenson

A
nn

u.
 R

ev
. E

ar
th

 P
la

ne
t. 

Sc
i. 

20
20

.4
8:

46
5-

48
9.

 D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 K
ob

e 
U

ni
ve

rs
ity

 o
n 

11
/2

6/
20

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 M

etallic h

ydrigen

Jupiter’s interior model
(Stevenson 2020)

~0.9Rjup?

~0.96Rjup?
molecular
hydrogen

metallic 
hydrogen

1 NATURE ASTRONOMY 1, 0178 (2017) | DOI: 10.1038/s41550-017-0178 | www.nature.com/natureastronomy

mission control
PUBLISHED: 4 JULY 2017 | VOLUME: 1 | ARTICLE NUMBER: 0178

Launched in August 2011, NASA’s 
Juno spacecraft arrived at its target, 
Jupiter, on 4 July 2016. Its unique polar 

orbit provided our first up-close view of 
the largest planet in the Solar System. 
Although only at the early stages of Juno’s 
original mapping strategy, the mission has 
already provided us with a view of Jupiter 
that shatters decades-old concepts of how 
giant planets work. Juno’s closest approach 
varies from orbit to orbit, but stays within 
3,500–8,000 km of the cloud tops. With an 
orbital period of approximately 53 days, 
the spacecraft screams past the planet, 
passing over both poles in only 2 hours. 
The highly elliptical trajectory carries 
Juno away from Jupiter’s harsh radiation, 
reaching a distance of nearly 8 million 
kilometres (113 Jovian radii) before 
returning. The result is a series of 32 close 
flybys, providing essentially a complete 
map of Jupiter by arranging each close pass 
at a different Jovian longitude.

Juno (pictured) is equipped to 
investigate Jupiter’s interior and polar 
magnetosphere. To avoid contamination 
from the spacecraft field, Juno’s 
magnetometers (MAG) are located at the 
end of one of the solar arrays. They are 
co-located with a set of non-magnetic 
star cameras (ASC) that are capable of 
detecting any movement of the arrays. 
The Gravity Science experiment uses the 
high-gain antenna at both X-band and 
Ka-band frequencies that eliminate effects 
from interplanetary and Jovian plasma 
environments. The six-channel Microwave 
Radiometer (MWR) probes Jupiter’s deep 
atmosphere beneath the visible cloud 
tops. Juno’s polar orbit is ideal to explore 
Jupiter’s magnetosphere and aurora, 
characterizing the charged particles and 
plasma waves responsible for stimulating 
the aurora (with Waves, JADE and JEDI) 
while simultaneously imaging both in the 
ultraviolet (UVS) and infrared (JIRAM). 
Extensive ground-based observations 
complement the measurements from 
the spacecraft. 

Juno’s first views beneath the clouds 
show a seemingly complex world with 
atmospheric composition that varies 
with depth and latitude. The ammonia 

abundance changes significantly at depths 
corresponding to 30 bars or more, with 
a deep band feature of high abundance 
penetrating down over 350 km, just 
north of the Jovian equator. Jupiter’s deep 
atmosphere clearly revealed an unexpected 
discovery1,2 : beneath the cloud tops, giant 
planets are not uniform in composition 
or temperature. This new paradigm sheds 
doubt on the concept of using in situ 
probes to determine the global abundances 
of elements in the giant planets — 
necessary for constraining planetary 
formation theories. Juno’s discoveries 
will compel a revised strategy if we are to 
obtain this information with confidence in 
the future. 

Juno’s initial observations of Jupiter’s 
gravitational and magnetic fields have 
yielded significant insights as well. The 
early gravity field measurements — 
obtained by tracking the Doppler shift of 
Juno’s radio signal acquired by the NASA 
Deep Space Network — hint that the core 
structure is not what was expected. Instead 
of seeing evidence of a compact core, or 
no core, the data appear more consistent 
with a large, possibly diffuse or fuzzy core. 
There are indications of deep internal 
motions, raising new possibilities for how 
giant planets form and evolve3,4.

The magnetic field observations from 
Juno’s first perijove were obtained much 

closer to the planet than any previous 
measurements and revealed higher-order 
terms of the magnetic field that drop 
off rapidly with distance. The magnetic 
field is both stronger and more spatially 
complex1,5 than previously modelled. 
How this insight contributes to our 
understanding of the planetary dynamo 
will depend on observations from future 
perijove passes.

A primary objective of the Juno mission 
is to combine remote sensing of Jupiter’s 
aurora with the first in situ measurements 
of the particles and fields over the polar 
regions. Early results show that Juno 
passed through the high-latitude regions 
where particles were beamed along the 
magnetic field6, but, surprisingly, did not 
detect the field perturbations associated 
with the expected field-aligned electrical 
currents. The lack of evidence of strongly 
accelerated downward electron beams is 
puzzling; it appears that Jupiter’s auroral 
processes are not as similar to Earth’s as 
previously thought. Rather, upward loss 
cones, suggestive of diffusive aurora, 
are reported7.

Juno’s survey of Jovian radio emissions 
provides the first opportunity to pass 
directly through the radio-source regions 
at Jupiter8. Kilometric, hectometric and 
decametric emissions were all observed. 
Juno seemingly passed through as many 
as six sources of auroral radio emissions 
during the close pass over Jupiter’s poles.  ❐

SCOTT J. BOLTON is at the Southwest 
Research Institute, 6220 Culebra Road, 
San Antonio, Texas 78238, USA. 
e-mail: sbolton@swri.edu
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Juno celebrates a year at Jupiter
NASA’s Juno mission to Jupiter has just returned its early science results after spending a year orbiting 
the ‘King of the Solar System’. Principal Investigator Scott Bolton summarizes what we have learnt.

JunoCam and
Ultraviolet Imaging
Spectrometer (UVS)
(hidden)
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Jovian Auroral
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Magnetometers (MAG)
and Advanced Stellar 

Compass (ASC)

Microwave
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(MWR)

An artist’s impression of the Juno spacecraft 
with its science instruments. Jovian Infrared 
Auroral Mapper (JIRAM) is not shown. 
Image: NASA/JPL-Caltech. 
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Br near Jupiter’s dynamo surface, ~0.85Rjup 
(n≤18; JRM33 in 2016-21)
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• Setup (Jones 2014; also Gastine et al. 2014): 

– model the metallic region & the transition 
to the molecular region: 0.09RJ ≲ r ≲ 0.96RJ

– dynamos driven by anelastic, rotating 
convection (Lantz & Fan 1999; Braginsky & Roberts 1995) 

– a reference state (French et al. 2012):
• density contrast, r(rcore)/r(rcutoff) ~ 18
• electrical conductivity s begins to drop 

at r ~ 0.85-0.90RJ

• Key outcomes:
– jupiter-like magnetic fields reproduced

Convection-driven dynamo models for Jupiter

Br at the cutoff radius rcutoff ~ 0.96 RJ
truncated up to n=10 (after Jones 2014)

metallic region

electrical conductivity
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• Setup (Jones 2014; also Gastine et al. 2014): 

– model the metallic region & the transition   
to the molecular region: 0.09RJ ≲ r ≲ 0.96RJ

– dynamos driven by anelastic, rotating 
convection (Lantz & Fan 1999; Braginsky & Roberts 1995) 

– a reference state (French et al. 2012):
• density contrast, r(rcore)/r(rcutoff) ~ 18
• electrical conductivity s begins to drop 

at r ~ 0.85-0.90RJ

• Key outcomes:
– jupiter-like magnetic fields reproduced
– a magnetic tangent cylinder formed

• attaching to a “top” of the metallic 
region at the equator

• one jet outside the MTC; incoherent inside
– fluctuating: to be analyzed

Convection-driven dynamo models for Jupiter

thelowconductivityregion,theflowinthemetallichydrogen
regionhavinglittlezonalflow,duetolockingbythemagneticfield.
Thereisasmalltransitionregionattheedgeofthemetallichydro-
genregionwherethereissomezonalflowwithnon-negligible
electricallyconductivity,butthistransitionregionseemstobe
toothintoaffecttherunDdynamosignificantly.InFig.6c,the
runBsolution,thezonalflowisimportantinthemetallichydrogen
region.Differentialrotationthenshearstheconvectioncolumns,
andahighlynonaxisymmetricnondipolarfieldpatternresults.
Thisseparationofthezonalflowandtoroidalfieldintodistinct
regionsoutsideandinsidethetransitionzoneappearstobecrucial
toobtainingadipolarJupiter-likemagneticfield.Fig.6dshowsthe
radialvelocityintheequatorialplane.Theconvectioncolumns

outsidethemetallichydrogenregionaredisconnectedfromthose
inside.Moviesshowthatthesmallscaleconvectioninthecurrent-
freeregionisstronglyadvectedbythezonalflow,whereasthecon-
vectingcolumnsinthemetallichydrogenarenotsignificantly
shearedovertheirlifetime.AtPr¼1theconvectionoutsidethe
metallichydrogenregionisonasmallerscalethantheconvection
inthemagneticallyinfluencedregion(Gastineetal.,2012)butat
Pr¼0:1thedominantazimuthalwavenumberisnotsodifferent.
Gastineetal.(2012)arguethatthevigoroussmallscaleconvection
intheouterregionsmakeslargescaledipolardynamoaction
problematic,sothelargerscalesatPr¼0:1maybeconnectedwith
theexistenceofthedipolarwindowthere.Themeridionalsection
Fig.6eofurshowsthattheflowiscolumnar,thoughthecolumns
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Fig.5.(a)TheradialcomponentofJupiter’smagneticfieldatthemeanradius(Connerney,1993).(b)Snapshotoftheradialcomponentofthemagneticfieldfromthedynamo
simulation(fromrunD,thehighresolutionversionofrunA)truncatedatsphericalharmonicdegree5.(c)Thesamesnapshotoftheradialcomponentofmagneticfieldfrom
thedynamosimulationas(b)butnowatfullresolution.(d)Meridionalsectionoftheaxisymmetriccomponenttheazimuthalmagneticfieldatthesametimeinthe
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donotreachrightacrosstheplanet.Columnarconvectionappears
tobeessentialfordynamoactiondominatedbythedipolar
component(Olsonetal.,1999;SreenivasanandJones,2011).

Fig.7showsasequenceofsnapshotsoftheaxisymmetricpart
oftheazimuthalfieldatdifferenttimestakenfromrunB,a
non-dipolarrun.Thesequenceshowsevidenceofadynamowave
progressingfrompoletoequator,ashappensinthesolardynamo.
InFig.7a,thefieldisdominatedbynegativefieldinthenorthern
hemisphereandpositivefieldinthesouthernhemisphere,the
antisymmetricformoftheazimuthalfieldbeingconsistentwith
adipolardynamogeneratedfield.However,inFig.7bhigh-latitude
reversedfieldstartstogrow,andbythetimeofFig.7ctheoriginal
azimuthalfieldisbeingsqueezedbythesereversefluxpatches
movingtowardstheequator.BythetimeofFig.7d,theoriginal
fluxpatcheshavegone,andthefieldisapproximatelyreversed
fromFig.7a.Thecyclethenrepeats,withfaintpatchesoftheori-
ginalfieldparitynowvisibleathighlatitudes.Thesequenceshown
inFig.7hasbeenchosenbecausethedynamowaveisquiteclear-
cut,butingeneralthedynamowavesarerathererratic,ascanbe
anticipatedfromtherunBplotsinFig.2a,superimposedon
chaoticfieldfluctuationstypicalofhighRmnumericaldynamos.
However,theradialcomponentofthefieldisconsistentwitha
dynamowaveinterpretation.Dynamowaveswereseenby
Duarte(2014)inacompressibleJupitermodeldynamoatPr¼1,
thoughthesetravelledfromequatortopole.

Theparameterspaceislarge,andithasnotyetbeenfully
mapped.However,atPrbetween0.1andunitywithuniformheat-
ing,therunBbehaviourwasfrequentlyfoundatrelativelylowRm.
AtlargerRm,theflowislesscolumnar,andthedynamoissmall
scale,asfoundinBoussinesqmodelswhenthelocalRossby

numberbecomestoolarge(SreenivasanandJones,2006;Olson
andChristensen,2006).AsthePrandtlnumberisreducedtowards
0.1,theweakhighlatitudereversedfluxpatchesseeninFig.7no
longergrow,thoughthereisafainttraceoftheminFig.5d.

InBoussinesqdynamomodels,changingfromafixedtempera-
tureouterboundaryconditiontoafixedfluxouterboundarycon-
ditioncanmakeasignificantdifferencetotheformofthemagnetic
fieldandtheconvection(SakurabaandRoberts,2009;Horietal.,
2010).Thisseemstobelesstrueintheseanelasticdynamomodels,
buttoexplorethiseffectwepresentinFig.8typicalsnapshots
fromrunsEandI,whichdifferonlyinthatinrunIthefluxisfixed
attheouterboundarytotheaveragevaluefoundinrunE(see
Fig.3b).Thismeansofcoursethattheentropyisnolongerfixed
atzerothere,andinrunIthepoleswereslightlycoolerandthe
equatorslightlyhotter.Sincetheconvectionisdrivenbyverysmall
entropychanges(Jupiter’sinteriorisclosetoadiabatic)thiscorre-
spondstoonlyaverysmallpole-equatortemperaturedifference,
wellbelowanyobservationalconstraints.Fig.8b,dandfcorre-
spondtothefixedfluxcase,Fig.8a,c,andetothefixedentropy
case.Thereisnogreatdifferencebetweenthetwocases,butthe
dipoleisslightlystrongerinthefixedfluxcase,andthisisthecase
formosttimes,thoughoccasionallythedipoleinrunEwillexceed
thatinrunI.ThezonalflowinrunIismoreconfinedtotheequa-
torialregionaswewouldexpectfromthestrongerdipoleleading
tomoreefficientlockingofthezonalflow.InFig.8eandftheaxi-
symmetricradialmagneticfieldsarecompared.Thereismore
reversedfluxneartheequatorinthefixedentropycase,andthis
leadstoabeltofslightlyweakerradialfieldneartheequatorin
Fig.8acomparedtoFig.8b;althoughthisfeatureisnotvery
striking,itispersistent.
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• Predicted Alfvén speeds                                  
UA = (< "𝐵!2>/µ0<r>)1/2 :

– independent of wavenumbers, i.e. nondispersive
– higher for low r,   i.e. increasing with s
– drops to the MTC 

Alfvén speed in the anelastic simulations

Cylindrical radius  s/rcutoff
at E = 1.5*10-5, Pm=3, Pr = 0.1, H=1.4 

& fixed entropy-flux outer boundary
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• Identified with the predicted speeds 
of UA = (< #𝐵&2>/µ0<r>)1/2

– travelling in s, outwardly or inwardly, 
from an outer radius (0.6 < s/rcutoff < 0.8)

– faster than convective speed 

• Reflected at ~ MTC
– which acts as an interface to the 

poorly-conducting zone

Torsional waves in Jovian simulations

(KH, Teed & Jones, EPSL 2019)
at E = 1.5*10-5, Pm=3, Pr = 0.1, H=1.4 
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• Reflection at ~ the MTC
– as well as transmission to the 

outside
– reflected waves not identical      

to incident waves
• due to its spherical geometries, 

variable background fields,
nonlinearities, etc.

• Waveforms can become sharp
– steepening; weak, unstable 

• typical for inviscid nonlinear 
waves

• e.g. water waves, shock waves
• cf. dispersive, cnoidal/solitaty

Rossby ones (Hori et al. 2017)

Evolution of torsional waves

Cylindrical radius  s

Am
pl

itu
de

 𝑢
′ !



• Possibly due to the change in UA = (B0
2/rµ0)1/2 (e.g. Alfvén & Fälthammar 1963)

• More likely due to the drastic change in the electrical conductivity s,   
or the magnetic diffusivity h = 1/µ0s
– Consider a toy model: 1D incompressible 

models for a wave (k, w) approaching 
a resistive layer

– for a jump, h = h0 Q(x - x0)
• the reflection coefficient when w >> VA

2/h0 :

• the skin depth  (w/2h0)-1/2

• if k2 << w/h0 , |R| ~ 1, i.e. perfect reflection

– for a smoothly change, h(x) ~ exp l(x - x0)
• reflections when k < l, i.e. the wavelength        

of the incoming wave is long compared to 
the transition thickness

h(x)

(Yamamoto, BEng thesis 2019)

Reflection of Alfvén waves

conductor resistive layer

uniform B0

incoming wave 
by’(x) ~ ei(kx-wt)



• Possibly due to the change in UA = (B0
2/rµ0)1/2 (e.g. Alfvén & Fälthammar 1963)

• More likely due to the drastic change in the electrical conductivity s,   
or the magnetic diffusivity h = 1/µ0s
– Consider a toy model: 1D incompressible 

models for a wave (k, w) approaching 
a resistive layer

– for a jump, h = h0 Q(x - x0)
• the reflection coefficient when w >> VA
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• 1D incompressible models for a wave  
(k, w) approaching a resistive layer
– for a jump, h = h0 Q(x - x0)

• the reflection coefficient when w >> VA
2/h0 :

• the skin depth  (w/2h0)-1/2

• if k2 << w/h0 , |R| ~ 1, i.e. perfect reflection

– for a smooth change, h(x) = h0 exp l(x - x0)
• reflections when k < l, i.e. the wavelength  

of the incoming wave is long compared to 
the transition thickness

Reflection of Alfvén waves (cont’d)

When the waves travel quickly so that ω ≫ V 2
A/η0, the valid solution is

λ = −(1 + i)

√
ω

2η0
. (C.8)

Notice here the electromagnetic skin depth given with
√
2η0/ω. So the conti-

nuity condition on by and ∂by/∂x implies, respectively,

1 +R = T and ik(−1 +R) = −(1 + i)

√
ω

2η0
T . (C.9)

We hence obtain the reflection coefficient,

R =
ik − (1 + i)

√
ω/2η0

ik + (1 + i)
√

ω/2η0
. (C.10)

For ω ≫ k2η0, this yields R → −1 and T → 0, i.e. nearly perfect reflection.

From (C.2), this is equivalent to positive reflection of uy across the interface.

When the approximations are inappropriate, it gives rise to partial reflection

and partial transmission.
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uy for h0 = 1 
(after Yamamoto, BEng thesis 2019)
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Fig. 8: Reflection coefficient of the analytical solution(58) and simulation re-

sults for model 1.(The initial wave for k=4, ω=77.5)

Table 2: Comparison between analytical and calculated solutions.

η0 誤差 (ディリクレ境界条件) 誤差 (ノイマン境界条件)

10−3 0.7786 0.7786

10−2 0.2095 0.2095

10−1 0.1592 0.1592

100 7.298× 10−2 5.734× 10−2

101 7.284× 10−2 5.646× 10−4

21
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• Can be evaluated through the forcing 
terms in the momentum equation:

– TW initiated by the Reynolds/Lorentz 
force at an outer radius, 0.6 < s/rcutoff < 0.8 

– at which it is beated by convection on 
timescales of Rossby waves

• Note: distinct from the NatAstro scenario

Excitation in the dynamo simulations
Reynolds term  FR

forcing Lorentz term  FLD
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• Zonal flow fluctuations in another case
– standing inside the MTC

• travelling from an outer radius both inwardly and outwardly
• superposition with reflected waves enables standing waves

– only transmitted outside the MTC
• while being absorbed

à help to determine the location?

– cf.  Earth’s CMB
• the bound between the

core fluid and the rocky
mantle (Schaeffer & 
Jault 2016)

Torsional ‘oscillations’ possible

(KH, Teed & Jones, EPSL 2019)
at E = 1.5*10-5, Pm=3, Pr = 0.1, H=1.4 

Fluctuating, z-mean azimuthal velocity 𝑢′!
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• TW were not found if the background 
magnetic field is less dipolar
– no longer in magnetostrophic balance
– MTC becomes smooth and deep

– cf. even for a dipolar field 
when the geostrophy is lost 
(Boussinesq; Teed et al. 2015)

Failed cases

at E = 1.5*10-5, Pm=3, Pr = 0.1, higher Ra 
(unpublished)

& fixed entropy-flux outer boundary

Fluctuating, z-mean azimuthal velocity 𝑢′!
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TO in Jupiter?
TO may give rise to 
• magnetic secular variations

– thought of magnitude O(0.1 mT/yr) but 
unclear signals in simulations/Earth..

– now some indication by Juno? 
• in the inferred flow of period ~4 years & 

magnitude ≲ 0.9 cm/s  (Bloxham et al 2024)

• variations in length-of-day 
– potentially of magnitude < O(10-2 s) 

• ~ the accuracy of the System III (1965)  
rotation rate, relying on radio emission

• variations in the atmosphere
– unlike the rocky Earth!
– potentially by ≲ 10% of mean flows
– more data of the appearance (ground-base) 

• TO signals in infrared/~5µm images?

Br around GBS & residuals from steady flow
(Juno MAG; Bloxham et al. 2024)

u’f /max(Uf) at ~0.96 Rjup
(after Jones 2014; KH et al. 2019)

~28ºS

60ºS

0 8.8 17.6     26.4 35.2     44.1
Time  tJ [yrs]
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flow speed. However, this variation is only physically reasonable if we 
can find a time-varying flow consistent with the pass-by-pass velocity 
scale factors, in other words a time-varying flow that yields the cor-
responding average flow speed for each pass. It is possible, instead, 
that the different velocity scale factors (or average flow speeds) are 
mutually inconsistent.

We examine whether such a flow exists by fitting the pass-by-pass 
velocity scale factors with a simple sinusoidally varying flow model 
with a single period and no damping (Methods). We omit PJ01 from 
this analysis as that orbit passes over the spot less than 2 months 
after the baseline epoch and thus is insensitive to variations in the 
flow (the flow would advect the spot by less than 0.05° during those 
2 months). The best-fit solution is shown in Figs. 2c and 3: it has a period 
of 3.8 years and results in a variance reduction within the box of 24.8%. 
As expected, the variance reduction on a pass-by-pass basis varies 
substantially (Fig. 3b), as those passes with velocity scale factors that 
differ substantially from unity will have their fit enhanced more than 
a pass with a factor close to unity. Note that Fig. 3 shows the residuals 
to the radial component of the field, rather to the three components 
of the magnetic field, as the radial component is more readily inter-
preted in terms of changes in the flow speed. In a few cases, though, 
other components of the field show a much larger reduction in misfit 
than the radial component, most particularly Bφ (the east component 
of the magnetic field) for PJ24. In other words, there is not necessarily 
a one-to-one correspondence between the residuals in Fig. 2 and the 
variance reductions in Fig. 3. Comparing Fig. 2a with 2c, we can see that 
the residuals of the pairs of passes discussed earlier (PJ19 and 36, and 
24 and 38) are much reduced. For most passes, the red bars in Fig. 3b 
(the normalized misfits to the sinusoidal model) are below the grey 
line corresponding to 1 (the normalized misfit of the 42-orbit steady 
flow model), but two passes (PJ26 and PJ37) stand well-above the grey 
line indicating that they are fit worse by the sinusoidal model than by 
the 42-orbit steady flow model. These two passes are the most easterly 
passes within the box. PJ37 requires a flow speed almost 15% more 
rapid than that of PJ36 and PJ38, which though temporally adjacent 
to PJ37 are not spatially adjacent to PJ37, indicating that additional 
spatial complexity in the flow may be required. PJ26 is, instead, fit by 
a slower flow than the sinusoidal model arguing instead for additional 
temporal complexity. Additional complexity could take the form of 
more than one wave being present or wave damping. In case our results 
are skewed by these two passes, we repeat the sinusoidal fit omitting 
them, as shown by the light red curve in Fig. 3a. The fit to most of the 

remaining passes, in particular PJ24 and the targeted passes (PJ36, 
PJ38, PJ39, PJ41 and PJ42) is improved. The period of the sinusoidal fit 
is changed by only a small amount from 3.8 to 4.1 years.

–4 mT +4 mT

Fig. 1 | The steady velocity field and the background radial component of 
the magnetic field at 0.9 RJ . The projection is Hammer equal-area with the 
central meridian at 180° in System III coordinates (highlighted in grey); the 
central meridian is the zero line for the steady flow. The colour scale for the 
background magnetic field model is linear between the indicated limits. The 
flow velocity is scaled with latitude to account for the poleward convergence of 
meridians; the peak velocity (corresponding to the equatorial jet) is 0.86 cm s−1.
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Fig. 2 | Residuals of the radial component of the magnetic field data along 
track. The residuals (the difference between the observation and the model 
prediction), calculated every 15 s, are plotted along the track, with positive 
residuals plotted west of the track (in red) and negative residuals east of the 
track (in blue) as the spacecraft passes through periapsis from north to south. 
The radial component of the magnetic field model is shown in the background. 
The projection is cylindrical with a grid spacing of 15°; the equator is highlighted 
in grey. The residuals are calculated within the box shown in black. The colour 
scale is linear between the indicated limits and the bar below the colour  
scale depicts the residual scale. a, The residuals from the 42-orbit steady flow 
model. b, The residuals from the 42-orbit steady flow model after applying the 
pass-by-pass velocity scale factors. c, The residuals from the 42-orbit steady 
flow model after applying the sinusoidal flow time-variation model.
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TO in Jupiter?
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Fig. 2: (a) Spectrum and (b) dispersion diagram of DMD modes of Jupiter’s 5µm brightness[9], L′(θ, t),
from March 2005 to July 2018 between latitudes ±40◦. For coordinate delay d = 1 and no truncation
in singular values. See details and their performance in Methods. The shaded regions indicate the wave
frequency ranges, ωTW = UAk, as given in Table 1. Red and blue asterisks indicate Modes 1 and 2,
respectively, which are admitted in the wave window. Mode 1 has half period of 6.5 years and quality
factor of 5.8; Mode 2 has half period of 3.1 years and quality factor of 23. (c) Normalised, latitudinal
profiles of Mode 1 (red curve), Mode 2 (blue), and their superposition (black). Triangles mark local
peaks of the black curve, whose latitudes approximately match the jet ones. The jet latitudes and bands
(Table 2) are indicated in the shaded/white regions. (d-i) Reconstructed spatiotemporal structures of
Mode 1 (d-e), of Mode 2 (f-g), and of their superposition (h-i) to reveal the wave motion. Here the
latitudinal profile is presented against the normalised cylindrical radius, s/RJ, in the northern (d, f,
and h) and southern (e, g, and i) hemispheres. In figures d-i the jet latitudes and bands (Table 2) are
presented on the right side. Dotted curves indicate phase/ray paths of the torsional waves. Their slope,
the predicted wave speed UA, explains the travelling nature of the infrared emission at s/0.96RJ !, i.e.
in latitudes " 16◦N/S. 19

UA

UA

Images at ~5µm wavelength
(Antuñano, Fletcher, et al. 2019)

Year

~5µm brightness anomaly (100-day mean) 
vs. estimated TO speed

(KH, Jones, Antuñano, Fletcher, Tobias 2023)

TO may give rise to 
• magnetic secular variations

– thought of magnitude O(0.1 mT/yr) but 
unclear signals in simulations/Earth..

– now some indication by Juno? 
• in the inferred flow of period ~4 years & 

magnitude ≲ 0.9 cm/s  (Bloxham et al 2024)

• variations in length-of-day 
– potentially of magnitude < O(10-2 s) 

• ~ the accuracy of the System III (1965)  
rotation rate, relying on radio emission

• variations in the atmosphere
– unlike the rocky Earth!
– potentially by ≲ 10% of mean flows
– more data of the appearance (ground-base) 

• TO signals in infrared/~5µm images?



With no convective drivings

• Tidally-driven flows (Astoul & Barker, 
in review/arXiv)
– magneto-inertial waves play a 

central role

• MRI-driven?
– where a basic zonal flow shear acts 

as a Coriolis effect
– slow eigenmodes in solar near-

surface region? (Vasil et al. 2024) 
• proposed to drive the solar cycle as 

well as the solar ‘torsional 
oscillation’ there

• looks like our TW/O

Possibly in exoplanets? stars?
Tidal flows and magnetic fields 11

Figure 9. Amplitude of the fluctuating I and i averaged zonal flow hDi iI,i � hDi iI,i,C versus time C and cylindrical radius B for three simulations possibly
exhibiting propagating torsional Alfvén waves. The time average for the zonal flow hDi iI,i,C is performed over the whole time range shown in each plot
where the oscillations are observed. The green curve shows the Alfvén timescale CA (averaged over an approximate cycle around which CA is drawn) vs B. Left:
Le = 6 · 10�3. Middle: Le = 10�2. Right: Le = 2 · 10�2.

Alfvén time9, which describes the timescale for radial propagation
of these waves over a distance B, is defined by:

CA =
B

Le
»

h⌫2
Bii,I,C

, (16)

with ⌫B = ⌫A sin \ + ⌫\ cos \ the cylindrical component of the mag-
netic field. The temporally fluctuating mean zonal flows are shown
versus B in Fig. 9 for three simulations with increasing initial Lehnert
numbers that possibly exhibit torsional waves. The fluctuations of
the zonal flows as a function of B and C are nicely explained by the
variation of the Alfvén timescale inside the ITC (Eq. (16)), bending
towards higher B and C, when averaging over one cycle around dif-
ferent initial times. This suggests that the oscillatory and wave-like
nature of the zonal flows in these simulations is likely to result from
the propagation of torsional Alfvén waves. These appear to be ex-
cited near the polar regions and to subsequently propagate outwards
where they are primarily dissipated, rather than being reflected to
form torsional (standing-mode) oscillations.

We observe that the zonal flow oscillation cycle is longer for lower
initial Lehnert numbers, for example when comparing the timescale
of the first oscillation for Le = 6 · 10�3 (about 1000 rotation units)
and Le = 2 · 10�2 (about 400). It also increases with time in each
panel since the poloidal magnetic field, therefore ⌫B , decreases due
to Ohmic diffusion (for instance, it is about 1500 for the 2nd cycle
for Le = 6 · 10�3). For Le = 10�2, similar timescales are found as
for Le = 6 · 10�3 since torsional oscillations are triggered later in the
simulations (see the right panel in Fig. 3), so Lep (and so ⌫B) are of
the same amplitude as can be seen in Fig. 7 (top panel). It is interest-
ing to see that for Le = 10�2 (and for Le = 6 ·10�3), the amplitude of
the magnetic torques, viscous diffusion and meridional circulations
vary with the sign of the fluctuating zonal flows hDiiI,i�hDiiI,i,C ,
which we illustrate in Fig. B2: when hDiiI,i < hDiiI,i,C (left pan-
els) magnetic torques dominate, while when hDiiI,i > hDiiI,i,C
(right panels) viscous diffusion in FB and meridional circulation in
FI take over close to the pole. It is not clear whether the fast oscilla-
tions for Le = 2 · 10�2 are of the same nature since this cyclic trend
is not observed and magnetic torques dominate for all times like in
Fig. 8 (right panels). The transition between regimes where zonal
flows are strong, like in hydrodynamical cases, or are substantially

9 Since ⌫B is anti-symmetric compared to the equator, the square of it has
been taken before performing the I average.

quenched by magnetic torques (which also corresponds with when
slow torsional oscillations are observed) can be further interpreted by
introducing the back-reaction timescale Cap of the magnetic tension
on differential rotation. We define this in a similar way (but modified)
as Aurière et al. (2007) and Jouve et al. (2015), as Cap = ;⌦/Eap, with
Eap =

»
h⌫2

Bii,I the torsional Alfvén velocity of the magnetic field
in the cylindrical direction, and ;⌦ is once again the length-scale of
variation of the differential rotation.

For Le < 10�3, the back-reaction timescale is long compared to
both the winding-up timescale and the Ohmic damping timescale of
Alfvén waves C[ , namely Cap ⌧ C⌦ and Cap ⌧ C[ , respectively. This
means that differential rotation has time to stretch poloidal magnetic
field lines to create a strong toroidal component, while Alfvén waves
have insufficient time to propagate before being damped by Ohmic
diffusion. When Le ⇡ Lec, we measure (at C = 100) Cap ' C⌦ ' C[
(all taking values around 500). From Fig. 3 (left panel), we indeed
note the slight perturbation of ⇢dr to set in at early times for this
transitional Lehnert number. For higher initial Lehnert numbers Le >
Lec, Cap is smaller at a fixed time while C⌦ and C[ both stay the same,
so that Cap ⌧ C⌦ and Cap ⌧ C[ . This means that Alfvén waves
have time to propagate before being damped and their large-scale
axisymmetric correlations (magnetic torque) can act on differential
rotation to quench it.

3.3 Tidal dissipation rates as a function of Le

The variation in the strength of differential rotation (with Le and time)
has a substantial impact on tidal viscous dissipation rates ⇡a , as we
show in the bottom panel of Fig. 7. For low poloidal Lehnert numbers
Lep, since ⇢dr is very close to the hydrodynamical prediction (in
the upper panel), ⇡a also matches the prediction computed with
hydrodynamic (Le = 0) non-linear simulations (presented in AB22)
when the simulation reaches a time-averaged steady state.

On the other hand, for much higher initial Lehnert numbers
Le > Lec, ⇡a ends up much closer to the linear hydrodynamical
prediction, since differential rotation is too weak to impact viscous
dissipation in these simulations. Thus, for our set of parameters, the
main ingredient controlling the magnitude of viscous dissipation is
the strengths of the zonal flows, with the magnetic fields themselves
playing only an indirect role on ⇡a . For Pm = 1, the Ohmic dis-
sipation ⇡[ is quite low in all simulations compared to the tidal
power and viscous dissipation, which mainly balance each other, as

MNRAS 000, 1–24 (2025)
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studies found roughly similar (300–1,000 G) internal toroidal field 
strength confined within the NSSL. Given solar-like input parameters, a 
detailed calculation shows that the MRI should operate with latitudinal 
field strengths up to about 1,000 G (Methods).

Background shear modification dominates the MRI saturation 
mechanism (Methods), roughly

Ω
H
R

ΩS ω S ω
Ω S Ω S Ω ω

′ ≈
(2 − )( + )

2 ( + 2 )( + (2 ) + 2 )
, (3)r2

2

2
A
2 2

A
2 2

2 2
A
2∣ ∣

⊙

where Ω′ represents the dynamic changes in differential rotation. For 
S ≈ Ω ≈ ωA, |Ω′| ≈ 7 nHz, roughly consistent with the observed torsional 
oscillation amplitude (Fig. 1d).

We compute a suite of growing global perturbations using Dedalus25 
to model the initial phase of the solar cycle with quasi-realistic solar 
input parameters (Methods). Figure 2 shows representative solutions.

We find two distinct cases: (1) a fast branch with direct growth rates, 
γ, comparable to a priori estimates and (2) a slow branch with longer 
but relevant growth times and oscillation periods. The eigenmodes are 
confined to the NSSL, reaching from the surface to r/R⊙ ≈ 0.90–0.95, at 
which point the background shear becomes MRI stable.

For case 1, γ/Ω0 ≈ 6 × 10−2 (given Ω0 = 466 nHz) with corresponding 
e-folding time, te ≈ 60 days and no discernible oscillation frequency. 
The pattern comprises roughly one wave period between the equator 
and about 20° latitude, similar to the rotation perturbations seen in 
the torsional oscillations.

For case 2, γ/Ω0 ≈ 6 × 10−3 with te ≈ 600 days and oscillation frequency 
ω/Ω0 ≈ 7 × 10−3, corresponding to a period P ≈ 5 years. The pattern  
comprises roughly one wave period between the equator and about 
20°–30° latitude.

Apart from cases 1 and 2, we find 34 additional purely growing 
fast-branch modes, two additional oscillatory modes and one inter-
mediate exceptional mode (Extended Data Figs. 1–3).

Using the full numerical MHD eigenstates, we compute a system-
atic estimate for the saturation amplitude using quasi-linear theory  
(Methods): |Ω′| ≈ 6 nHz for case 1 and |Ω′| ≈ 3 nHz for case 2; both com-
parable to the observed torsional oscillation amplitude and the simple 
analytical estimates from equation (3). The true saturated state would 
comprise an interacting superposition of the full spectrum of modes.

Notably, the slow-branch current helicity, b bH ∇∇∝ ⋅ × , follows the 
hemispherical sign rule10, with < 0H  in the north and > 0H  in the south. 
The slow-branch modes seem to be rotationally constrained, consist-
ent with their low Rossby number26, providing a pathway for under-
standing the helicity sign rule.

Further helioseismic data analyses could test our predictions. The 
MRI would not operate if the poloidal field is too strong, nor would 
it explain the torsional oscillations if it is too weak. We predict cor-
relations between the flow perturbations and magnetic fields, which 
time-resolved measurements could test, constraining joint helioseismic 
inversions of flows and magnetic fields.

An MRI-driven dynamo may also explain the formation and cessation 
of occasional grand minima27 (for example, Maunder). As an essen-
tially nonlinear dynamo, the MRI is not a traditional kinematic dynamo 
starting from an infinitesimal seed field on each new cycle (Methods). 
Rather, a moderate poloidal field exists at the solar minimum, and the 
MRI processes it into a toroidal configuration. If the self-sustaining 
poloidal-to-toroidal regeneration sometimes happens imperfectly, 
then subsequent solar cycles could partially fizzle, leading to weak 
subsurface fields and few sunspots. Eventually, noise could push the 
system back onto its normal cyclic behaviour, as in the El Nino Southern 
Oscillation28.

Finally, our simulations intentionally contain reduced physics to 
isolate the MRI as an important agent in the dynamo process, filtering 
out large-scale baroclinic effects, small-scale convection and nonlinear 
dynamo feedback. Modelling strong turbulent processes is arduous: 
turbulence can simultaneously act as dissipation, drive large-scale 
flows such as the NSSL, produce mean electromotive forces and excite 
collective instabilities. Although sufficiently strong turbulent dissipa-
tion could eventually erase all large-scale dynamics, the mere presence 
of the solar torsional oscillations implies much can persist within the 
roiling background.
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Fig. 2 | Two meridional (r, θ) MRI eigenmode profiles. Longitudinal angular 
velocity perturbation, Ω r θ u r θ r θ′( , ) = ( , )/( sin( ))φ ; momentum-density 
streamfunction (φ-directed component; Methods), ψ(r, θ); longitudinal 
magnetic field, bφ(r, θ); magnetic scalar potential, aφ(r, θ); and current helicity 
correlation, H r θ( , ). The timescales te and P represent the instability e-folding 
time and oscillation period, respectively. a, Case 1: a typical directly growing 
fast-branch mode with no oscillation and growth rates γ ≈ 0.06Ω0. b, Case 2:  
a typical large-scale slow-branch mode with a roughly 5-year period. In each 
case, we fix the overall amplitude to 1 nHz for the rotational perturbations,  
with all other quantities taking their corresponding relative values.



Summary

Torsional Alfvén waves may well be excited in Earth and Jupiter

• propagating in cylindrical radius with Alfvén speeds ~ Bs/r1/2

– on timescales of O(100-1 yrs) 

• demonstrated in geo-/Jovian dynamo simulations
– when the field is predominantly dipolar
– preferably propagating in geo- ; possibly standing in jovian

• by reflections at an interface, MTC, for a sharp transition in conductivity

• giving rise to LoD variations and, in the gas giant, zonal flow 
changes in the overlying layer
– unclear signals in magnetic SV

• The detection in the planets: maybe? likely? (on-going)
– a potential window to infer the interior of the dynamos 
– 1d structure of Bs within the dynamo region, the radius at which the 

conducting region effectively begins, etc.. 


