Macaulay2 » Documentation
Packages » MixedMultiplicity :: homIdealPolytope(...,CoefficientRing=>...)
next | previous | forward | backward | up | index | toc

homIdealPolytope(...,CoefficientRing=>...) -- choose the coefficient ring of the (output) ideal

Description

The function homIdealPolytope creates a new ring of the form $k[X_0,\ldots, X_r]$, where $k$ is the coefficient ring of the output ideal. This option allows the user to chose the coefficient ring $k.$ The default ring is QQ.

i1 : I = homIdealPolytope ({(0,1),(1,0),(2,1),(1,2)}, CoefficientRing => ZZ/2)

             2       2     2     2
o1 = ideal (X X , X X , X X , X X )
             1 2   1 2   1 3   2 3

              ZZ
o1 : Ideal of --[X ..X ]
               2  1   3

Functions with optional argument named CoefficientRing:

Further information

  • Default value: QQ
  • Function: homIdealPolytope -- Compute the homogeneous ideal corresponding to the vertices of a lattice polytope in $\mathbb{R}^n$.
  • Option key: CoefficientRing -- an optional argument

The source of this document is in /build/reproducible-path/macaulay2-1.25.05+ds/M2/Macaulay2/packages/MixedMultiplicity.m2:838:0.