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[1] A linear trend estimated from a finite-length data set with random internal variability
has a spurious component which is a difference from the true trend caused by changes in
external conditions or parameters. Some moments and distribution functions of the
spurious trend depending on the length of data are derived theoretically under general
statistical assumptions. When the internal variability has a normal distribution, the
spurious trend also has a normal distribution. In general cases of nonnormal
distributions, we derive the distribution function of the spurious trend by the
Edgeworth expansion. A few low-order moments of the internal variability are
necessary to obtain the approximate distribution function from the expansion.
Population moments of the internal variability of a simple global circulation model are
calculated using a 15,200-year data set generated by a numerical experiment with a
purely periodic annual forcing. Dependence of the estimation error of sample moments
on the length of data is computed to evaluate an appropriate sample size for each
moment. An ensemble experiment with the same model is used to estimate the
detectability of a cooling trend in the stratosphere from a finite length data set with
internal variability. Hypothesis tests for the statistical significance of the estimated
trend are made: Student’s t test, bootstrap test, and the more accurate test using the
distribution function derived by the Edgeworth expansion. In the regions and seasons
in which kurtosis of the internal variability is large the assumption that the spurious
trend has a normal distribution is not appropriate, and the significance derived by the t
test is different from that by the test using the Edgeworth expansion.
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1. Introduction

[2] A global warming trend in the troposphere and a
cooling trend in the stratosphere have been estimated with
various kinds of observed and analyzed data [e.g., Intergov-
ernmental Panel on Climate Change, 2001; Ramaswamy et
al., 2001]. Increases of greenhouse gases such as carbon
dioxide are considered to be the most important cause of
these temperature trends, and the decrease of ozone is
equally important for the stratospheric cooling trend [e.g.,
Hare et al., 2004]. Changes in the frequency or intensity of
extreme weather events have also been reported in recent
years, such as heavy precipitation [Iwashima and Yamamoto,
1993; Frei and Schär, 2001; Osborn and Hulme, 2002;
Palmer and Rälsänen, 2002], intense extratropical cyclones
[Graham and Diaz, 2001], and intense hurricanes [Landsea
et al., 1996]. Anthropogenic effects have been proposed as

major contributors to these changes or trends [e.g., Schär
and Jendritzky, 2004; Hegerl et al., 2004]. There is common
difficulty to detect such a trend due to limited length of data
sets.
[3] Detection of a trend due to external causes from a

finite length data set may be difficult when the data
contain natural internal variability. In such a case, the
estimated trend may have a spurious component which is
the difference from the true trend caused by the changes
in external conditions or parameters, and we call the
component spurious trend. Figure 1 shows a simple
example of spurious trends in a model representing a
linear trend superimposed on random variability. The
estimated trends from some finite length data segments
differ from the true linear trend that is externally imposed
in the model. For example, the estimated value from the
first 5- or 10-year data is positive though the true trend is
negative. The difference depends on the length of the
data segment which is used to estimate the trend, and on
the period of the estimation (or, the time series of random
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variations). In addition to such random internal variations,
there are some other possible causes of spurious trends due
to the finite length of any data set: rather periodic external
forcings with a long period, such as the solar 11-year cycle;
intermittent external forcings with a long interval, such as
large volcanic eruptions; or, sudden level shift of data
quality, such as changes in instruments for observation.
Statistical considerations are necessary to interpret correctly
the estimated trend that contains spurious trends due to
these possible causes.
[4] Tiao et al. [1990] and Weatherhead et al. [1998]

investigated statistical properties of the spurious trend due
to internal variability and sudden level shift. It was
shown that the detection of linear trends is affected by
data length, the magnitude of internal variability, and the
autocorrelation of the variations in the data. They derived
the standard deviation of the estimated spurious trends;
shorter data length, larger standard deviation of internal
variability, and higher positive autocorrelation of the
variations in the data increase the standard deviation of
the spurious trend.
[5] If we can assume that the spurious trend has a normal

distribution, we need only its mean and standard deviation
in order to specify its distribution function. With this
assumption, the Student’s t test is often used to estimate
the statistical significance of the estimated trend. In general,
however, a spurious trend may have various distribution
functions, because the internal variability has various dis-
tribution functions.
[6] Taguchi and Yoden [2002b] performed 1000-year

integrations with a simple global circulation model under
a purely periodic annual forcing; they obtained highly
skewed or bimodal histograms of the internal interannual
variations of the polar stratospheric temperature. Linear
trend estimated in such a quantity may suffer from the
effect of the spurious trend having a nonnormal distribution.
The statistical considerations without the assumption of a

normal distribution could be applicable to the trends in
frequency or intensity of extreme weather events such as
heavy precipitation and gusty wind.
[7] In this study, we consider distribution functions of

spurious trends due to finite length of data with internal
variability, which generally has a nonnormal distribution. In
section 2 we describe the derivations of moments and
distribution function of the spurious trend under general
statistical assumptions. Some Monte Carlo simulations were
performed to quantitatively estimate the derivations. In
section 3 a 15,200-year data set which was obtained by
long time integrations of the model of Taguchi and Yoden
[2002b] is used to examine dependence of estimation error
of sample moments (mean, variance, skewness, and kurto-
sis) on the data length. The spatial and seasonal variations
of these moments of the internal variability in the simple
global circulation model are examined. We also performed
96 ensemble runs with the same model in which the
radiative heating had a linear cooling trend in the strato-
sphere. Statistics of the spurious trends are obtained and
compared with the theoretical results in section 4. The
statistical significance tests of the estimated trend are also
argued with these results. Estimation of linear trends with
the real atmospheric data and some applications of the
present statistical considerations are discussed in section 5.
Conclusions are given in section 6.

2. Distribution Function of Spurious Trend:
Theoretical Basis

2.1. Estimation of Spurious Trend

[8] A linear trend estimated from a finite length data set
contains a spurious trend if it has random internal variability
as shown in Figure 1.
[9] We consider a simple linear trend model with random

internal variability;

X nð Þ ¼ anþ bþ � nð Þ; n ¼ 1; � � � ;N ; ð1Þ

where X(n) is an observed value at time n, a is true linear
trend, b is a constant, and �(n) is a random number at
time n which gives internal variability. When we estimate
a linear trend, â, by the method of least squares for a
finite length of data, N, then the spurious trend, a0, is
given by

a0 ¼ â� a ¼ S�1
nn

XN
n¼1

n� N þ 1

2

� �
e nð Þ; ð2Þ

where

Snn ¼
XN
n¼1

n� 1

N

XN
n¼1

n

 !2

¼ N N þ 1ð Þ N � 1ð Þ
12

: ð3Þ

The derivation is given in the Appendix A.

2.2. Moments of Spurious Trend

[10] Let �(n)s be independently identically distributed
(i.i.d.) random variables. Then a0 has various values for
each trial, and we can calculate some moments of the
probability of a0. The mean and skewness of the spurious

Figure 1. An example of spurious trends. The polygonal
line shows a time series of data which has a linear trend
represented by the straight thin solid line and random
variability. The thick solid, long-dashed, short-dashed, and
dash-dotted lines represent estimated trends from the first 5,
10, 20, and 50 years of data, respectively.
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trend are 0, while the standard deviation, sa0, and kurtosis,
b2a0, are given by

sa0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

N N þ 1ð Þ N � 1ð Þ

s
se �

ffiffiffiffiffi
12

p
N�3

2se

when N is large enough; ð4Þ

b2a0 ¼
3

5

3N2 � 7

N N þ 1ð Þ N � 1ð Þ b2e �
9

5
N�1b2e

when N is large enough; ð5Þ

where s� and b2� are the standard deviation and kurtosis of
�(n), respectively. We can also calculate the moments of
higher order. Generally, the moments of odd order are 0,
because the probability of a value of a0 is identical to that of
�a0, which can be obtained from the data whose time
sequence is in the reverse order. The standard deviation of the
spurious trend is approximately proportional to N�3/2 times
the standard deviation of the internal variability, which result
is basically the same as that of Tiao et al. [1990] and
Weatherhead et al. [1998]. The kurtosis of the spurious trend
is approximately proportional toN�1 times the kurtosis of the
internal variability. As N increases, the kurtosis approaches
zero at a slower rate than the standard deviation.

2.3. Distribution Function of Spurious Trend

[11] The probability density function (pdf) of a0, fa0(x), is
an even function, for the same reason that the moments of
odd order are 0.
[12] First, we consider the case that �(n) has a normal

distribution with a standard deviation s�. Characteristic
function (ch.f.) of a0, ya0(w), which is defined as the Fourier
transform of the pdf, is derived as

ya0 wð Þ ¼
Z 1

�1
exp iwxð Þfa0 xð Þdx

¼ E exp iwa0ð Þð Þ

¼
YN
n¼1

y� S�1
nn n� N þ 1

2

� �
w

� �

¼ exp � 1

2
w2S�1

nn s
2
�

� �
; ð6Þ

where E(x) is the expectation of x and y�(w) is the ch.f. of
�(n). By substituting the exact form of (4) into (6), we
obtain that a0 has a normal distribution with the mean 0 and
the standard deviation sa0, N(0, sa0

2).
[13] It has been often assumed that the spurious trend has

a normal distribution, but the distribution function of the
spurious trend depends on that of the internal variability.
Here we consider general cases with any symmetric form of
the pdf by calculating the Edgeworth expansion of cumu-
lative distribution function (cdf) of the spurious trend. The
Edgeworth expansion was originally used in arguments of
sample mean [e.g., Shao 2003]. Let as

0 be standardized a0;
as
0 = a0/sa0. The Edgeworth expansion of the cdf of as

0, Fa0s
(x),

is given by

Fa0s xð Þ ¼ F xð Þ þ
X1
l¼1

Ql xð Þf xð ÞN�1
2
l; ð7Þ

whereF(x) and f(x) are the cdf and pdf of the standard normal
distribution, N(0, 1), respectively. The derivation is given in
the Appendix B. For odd l,Ql(x) is 0, while for even l,Ql(x) is
a polynomial of degree at most 2l � 1 with coefficients
depending on the first l + 2 cumulants of �(n). The cumulants,
kk, are statistics related to the moments; k1, k2, k3k2

�3/2, and
k4k2

�2 are the mean, variance, skewness, and kurtosis,
respectively. The Ql(x)s for the first two even ls are

Q2 xð Þ ¼ � 3

40

k4
k22

H3 xð Þ ¼ � 3

40
b2� x3 � 3x

 �

; ð8Þ

Q4 xð Þ ¼ � 3

560

k6
k32

H5 xð Þ � 9

3200

k24
k42

H7 xð Þ; ð9Þ

where Hk(x) is kth Hermite polynomial.
[14] Distribution of the spurious trend converges to a

normal distribution asymptotically as N increases (cf. the
central limit theorem). This expansion is useful for consid-
ering convergence speed, which for a normal distribution is
O(N�1), because Q1(x) = 0. In general, when the conver-
gence speed to a distribution is O(N�l/2), the distribution has
lth-order accuracy. For example, the normal distribution has
second-order accuracy in the case of the spurious trend.
[15] We can obtain approximate distributions of the spuri-

ous trend from the Edgeworth expansion which are more
accurate than the normal distribution. If we know the standard
deviation and kurtosis of the random internal variability, we
can obtain the approximate cdf with fourth-order accuracy,
and also obtain the approximate pdf by differentiating the cdf.
[16] The approximate pdfs of a0with fourth-order accuracy

are shown by solid curves for N = 10, 20, and 50 in Figure 2,
in the case that s� = 1 and b2� = 6. Histograms of a0 obtained
by Monte Carlo simulations are also shown in Figure 2: we
replicated the calculation of a0 with i.i.d. random numbers
having a Weibull distribution with scale parameter of 1
and shape parameter of 1, We(1, 1), whose standard
deviation and kurtosis are 1 and 6, respectively. The
internal variability of the real atmosphere may have such a
value of kurtosis, as shown in section 3. Though there are
small differences in the tails of the histogram and the
approximate pdf for N = 10, they show a good
correspondence for larger N. The histogram of a0 itself
becomes closer to a normal distribution as N increases; the
difference is discernible for N = 50 around the peak but is
not for N = 100 (not shown).

2.4. Difference Between Distribution Function of
Spurious Trend and Normal Distribution

[17] The difference between the cdf of the spurious trend
and normal distribution, jDF(x)j, is

DF xð Þj j ¼ Fa0s xð Þ � F xð Þ
�� �� � Q2 xð Þf xð Þj jN�1

when N is large enough; ð10Þ

because of (7). The maximum of jDF(x)j is approximately
0.04jb2�jN�1 from (8). When the data length, N, is larger
than 4jb2�j, the difference is less than 0.01. To an accuracy
of 1%, we can assume that the spurious trend has a normal
distribution for that data length.
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[18] An inverse Edgeworth expansion is referred to as a
Cornish-Fisher expansion [e.g., Shao 2003]. It is an expan-
sion of percentile, wa = Fa0s

�1(a), and the expansion is given
by

wa ¼ za þ
X1
l¼1

ql zað ÞN�1
2
l; ð11Þ

where za = F�1(a). For odd l, ql(x) is 0, while for even l,
ql(x) is a polynomial depending on the first l Qk(x)s. The
ql(x)s for the first two even ls are

q2 xð Þ ¼ �Q2 xð Þ; ð12Þ

q4 xð Þ ¼ Q2 xð Þ d
dx

Q2 xð Þ � 1

2
x Q2 xð Þf g2 � Q4 xð Þ: ð13Þ

When za = ±
ffiffiffi
3

p
, q2(x) is 0 because of (8) and (12), and a�

= F(�
ffiffiffi
3

p
) � 0.04, a+ = F(

ffiffiffi
3

p
) � 0.96. Then w0.04 and

w0.96 is approximately equal to z0.04 and z0.96, respectively.
Namely, the difference between a 92% confidence interval
of normal distribution, [z0.04, z0.96], and that of the
distribution of a0, [w0.04, w0.96], is approximately 0. For
the confidence level larger than 92%, the difference
becomes larger as the level approaches 100%.

2.5. Statistical Significance Test and Interval
Estimation

[19] When a0 has a normal distribution, a statistic t, which
is the Studentized a0, t = a0/sa0, has a t distribution with
degree of freedom N � 2, t(N � 2), where sa0 is the
estimation of sa0 determined by the estimation of s�, s�:

s2a0 ¼ S�1
nn s

2
� ; ð14Þ

s2� ¼
1

N � 2

XN
n¼1

X nð Þ � ânþ b̂

 �n o2

; ð15Þ

where b̂ is the estimation of b derived by the method of least
squares.
[20] If we know the cdf of a0, we can obtain the interval

estimation of the trend and test the statistical significance of
the estimated trend. The t distribution, t(N � 2), is often
used for the interval estimation and hypothesis test (Stu-
dent’s t test), with the assumption that the spurious trend has
a normal distribution. We can also use the distribution
obtained by the Edgeworth expansion for the interval
estimation and statistical significance test without any
prerequisite for the distribution function. This result can
be also used to validate the result with the t distribution.
[21] In addition to the method with the t distribution, the

bootstrap method, which is a resampling method [Efron,
1979], is used for the interval estimation and statistical
significance test [Hall, 1988]. This method requires many
trials to obtain enough samples, which is now possible as a
consequence of the advancement of computing facilities.
The bootstrap method is also evaluated in section 4.

3. Numerical Experiment on Moments of
Atmospheric Internal Variability

[22] The spurious trend depends on the nature of the
random internal variability. Because the atmospheric inter-
nal variability often has a nonnormal distribution, we need
to know some moments of the atmospheric internal vari-
ability in order to obtain distribution function of the
spurious trend due to the atmospheric variations. Usually,
the time series of atmospheric observations are not long
enough to fully characterize the internal variability. There-
fore we perform a long time integration with a global
circulation model to examine such internal variability in
the model atmosphere.

3.1. Model and Experiment

[23] The atmospheric model used in this study is the same
as that used by Taguchi and Yoden [2002a]. It is based on a

Figure 2. The pdf of the spurious trend derived by the Edgeworth expansion up to O(N�1) represented
by solid curve and the histogram derived by the Monte Carlo simulation (replication number is
10,000,000) in which �(n) has We(1, 1) from the (a) 10-, (b) 20-, and (c) 50-year data. The dashed line
represents the pdf of the normal distribution, whose standard deviation is the same as that of the
histogram. The number at the top right corner is the standard deviation of the histogram.
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three dimensional primitive equation model (Swamp Proj-
ect, AGCM5 (in Japanese), available at http://www.gfd-
dennou.org/arch/agcm5/). The horizontal resolution is a
T21 spherical harmonic truncation and it has 42 levels from
the surface to the mesosphere. Some physical processes
were simplified in the model; Newtonian heating/cooling,
dry atmosphere with no moist processes, dry convective
adjustment, and Rayleigh friction at the bottom and some
upper levels.
[24] The radiative equilibrium temperature for the New-

tonian heating/cooling in midwinter in the control experi-
ment is shown in Figure 3a. A sinusoidal surface
topography of zonal wave number 1 was assumed in the
Northern Hemisphere, and the amplitude was set to 1000 m.
Ten 1520-year model runs were made after 1-year spin up
integration from each initial state of an isothermal atmo-
sphere (250 K) at rest with small disturbances. This gives
15,200 years of data, and we analyze only the monthly
averaged zonal mean temperature.

3.2. Estimation Error of Sample Moments

[25] Sample moments estimated from finite length data
sets have errors from the population moments of variability.
The error depends on the data length and the distribution of
the internal variability. Figure 4 shows histograms of the
monthly mean polar temperature at 2.6 hPa. The climato-
logical mean of the polar temperature is high in summer and
low in winter and shows a smooth seasonal variation. It is
much higher than the prescribed radiative equilibrium
temperature from late fall to early spring because of large
wave driving of planetary waves propagated from the
troposphere. The distribution also depends on season. The
standard deviation is larger in winter than in summer: it is
15.5 K in January and 0.4 K in July. The polar temperature
in winter has a highly skewed distribution with a large
fraction of low-temperature months near the radiative equi-
librium temperature. The large deviations to warmer side
reflect the occurrence of stratospheric sudden warmings
[Yoden et al., 2002]. The warmer side tail of the distribution
is elongated, so that the mean of the distribution is higher
than the mode of the distribution. Therefore both of the
skewness and kurtosis are positive and large. In January and
February, the distribution has two modes. In the tropo-

Figure 3. The radiative equilibrium temperature profile for the Newtonian heating/cooling in midwinter
(a) in the control experiment and (b) at the last year in the trend experiment and (c) the difference between
Figures 3a and 3b.

Figure 4. Dependence of the histogram of the monthly
averaged zonal mean temperature at 86	N and 2.6 hPa on
month. The mean at each month and the monthly mean
radiative equilibrium temperature are connected by long-
dashed and short-dashed lines, respectively. The region
between the maximum and minimum temperature of each
month is shaded. The two numbers at right-hand side of
each month are the mean (top number) and the standard
deviation (bottom number).
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sphere, on the other hand, the monthly mean temperature
has an almost normal distribution throughout of the year
(not shown).
[26] Though the shape of the histogram is similar to that

derived from a 1000-year data set [Taguchi and Yoden,
2002b], 1000 years may be insufficient to estimate the
moments of the distribution because of irregularities of the
histograms. Here we examine dependence of the estimation
error of sample moments on the data length. We calculate the
sample moments from b1,520/Nc � 10 nonoverlapping
continuous N-year data for some Ns, where bxc is the floor
function that gives the largest integer less than or equal to x.
[27] Figure 5a shows histogram of the normalized differ-

ence of the sample mean from the mean derived from the
15,200-year data. The values are normalized by the standard
deviation derived from the 15,200-year data. The histogram
is similar to the pdf of a normal distribution. The standard
deviation of the histogram becomes smaller as N increases.
It almost corresponds to the theoretical result, sN�1/2 [e.g.,
Shao, 2003], where s is the population standard deviation.
With this result, we can roughly estimate the magnitude of

the error of the sample mean. For example, the standard
deviation of internal variability is about 15 K in the winter
stratosphere, so that the error of sample mean is about 3.4 K
(�15 K� 20�1/2) with 20 years of data and 2.1 K (�15 K�
50�1/2) with 50 years of data.
[28] The error of the sample variance also becomes smaller

asN increases (Figure 5b). In theory, error of sample variance
has ac2 distributionwith degree of freedomN�1,c2(N�1),
when the variability has a normal distribution. In general
cases, the standard deviation of the sample variance isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2N�1 þ 2 N � 1ð Þ�1

q
times the population variance, where b2 is

the population kurtosis [e.g., Kenney and Keeping, 1951].
For example, when N � 100(b2 + 2), the error of sample
variance is about 10%, and when N � 10(b2 + 2) the error
is about 30%. The histogram has some deviation from the
c2 distribution, and the standard deviation of the histogram
is smaller than that of the c2 distribution because of the
negative kurtosis. The histogram in the troposphere has
good agreement with the c2 distribution (not shown).
[29] The standard deviation of the histogram of the

sample skewness also becomes smaller as N increases

Figure 5. The histograms of (a) error of sample mean normalized by the standard deviation derived
from the 15,200-year data, (b) rate of sample variance to the variance derived from the 15,200-year data,
(c) sample skewness, and (d) sample kurtosis of the monthly mean polar temperature at 2.6 h Pa in
January for several data length, N. The crosses and bars denote the mean and standard deviation of each
histogram, respectively. The thick dashed line in Figure 5a represents the theoretical line of the standard
deviation, and the thin dashed lines in Figures 5a and 5b represent the pdf of the normal distribution and
c2(N � 1), respectively.
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(Figure 5c). The mean of the histogram for small N may
differ from the skewness derived from the 15,200-year data,
because sample skewness is not an unbiased estimator of
population skewness. In this case, the standard deviation of
the sample skewness derived by least squares fitting is
about 2N�0.55, and the error of sample skewness is about
0.1 for N � 250 and about 0.4 for N � 20.
[30] The sample kurtosis also has a similar dependence on

N (Figure 5d). Sample kurtosis is also not an unbiased
estimator of population kurtosis, so that the mean of the
histogram for small N is different from the kurtosis derived
from the 15,200-year data. The histogram has large skew-
ness in both the stratosphere and the troposphere (not
shown). In this case, the standard deviation of the sample
kurtosis derived by least squares fitting is about 4N�0.6, and
the error of sample kurtosis is about 0.1 for N � 500 and
about 0.7 for N � 20.

3.3. Spatial and Seasonal Distribution of Moments

[31] The moments of the atmospheric internal variability
depend on longitude, latitude, height, and season. We study
spatial and seasonal distribution of the moments of the
internal variability with the 15,200-year data.
[32] The year-to-year variation is the largest in the polar

region at almost every month and level. Figure 6 shows
month-pressure sections of some moments of monthly
averaged zonal mean temperature in the Northern polar
region. The standard deviation has a maximum of about
16 K around 12 hPa in February, and it is small in the
summer upper stratosphere. The large standard deviation is
associated with the occurrence of stratospheric sudden
warmings. In fall it is largest around 1 hPa, and the pressure
level at which it is the largest shifts down to about 100 hPa
in summer. In the troposphere, it is almost constant through
the year. In midlatitudes, the pattern of the standard devi-
ation is almost the same as that at high latitudes but it is
largest in December and the maximum value is about 8 K
around 12 hPa (not shown).
[33] The skewness and kurtosis are large in late fall and

winter in the lower stratosphere and around 1 hPa in May.

The maximum value of the skewness is about 2, while the
kurtosis is above 6 in the winter lower stratosphere and
around 1 hPa in May. In these regions and seasons, the
variability has a nonnormal distribution. In midlatitudes,
they are nearly 0, and the distribution of internal variability
is nearly normal (not shown).

4. A Numerical Experiment on Spurious Trend

[34] Since the internal variability depends on space and
season, so does the spurious trend. We performed an
ensemble experiment on the spurious trend with the same
model, in which the radiative heating was assumed to have a
linear cooling trend in the stratosphere.

4.1. Experimental Design

[35] The radiative equilibrium temperature for the New-
tonian heating/cooling was linearly changed for 50 years
from that in the control experiment to a final profile
shown in Figure 3b, which was made with a smaller
static stability N2 = 4.75 � 10�4 s�2 in the stratosphere.
Figure 3c shows the difference of the radiative equilibrium
temperature profile between the initial and the final years.
The externally given trend is about �0.25 K/year around
50 km.
[36] After 1-year spin-up integration with the radiative

temperature of the control experiment, a 96-member en-
semble of 50-year integrations was performed with the trend
in radiative temperature.

4.2. Dependence of Spurious Trend on Space and
Season

[37] Figure 7a shows an example of time sequences of the
polar temperature in January for all the 96 runs: it is a
monthly mean at 12 hPa. The externally given trend is about
�0.18 K/year at this level. The range of the year-to-year
variation is about 60 K, and the highest temperature reached
in the last year is much higher than the lowest temperature
in the first year. Thus we can find out that some runs show
warming trend for 50 years.

Figure 6. Meridional sections of (a) mean (contours) and standard deviation (shading), (b) skewness,
and (c) kurtosis of the monthly mean polar temperature. The contour interval is 10 K, 0.5, and 1 for the
mean, the skewness, and the kurtosis, respectively.
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[38] Histograms of the estimated linear trend by the
method of least squares with the first 20- and 50-year data
are shown in Figures 7b and 7c, respectively. Though the
ensemble average of the estimated trend is �0.13 K/year for
the first 20 years and �0.14 K/year for the 50 years, the
estimated trend for each ensemble member has both signs:
39 of the 96 runs showed a warming trend for the 20-year
estimation, and 18 runs for the 50-year estimation. The
ensemble average approaches the given value and the
variability of the spurious trend becomes smaller, as
the data length increases.
[39] Figure 8 shows time sequences of the polar temper-

ature and histograms of the estimated linear trend in July.
The year-to-year variation is much smaller than that in
winter. The variation range is about 8 K, and it is compa-
rable to the externally given cooling trend for 50 years. The
histograms show the estimated trend converges to the
externally given trend for the 50-year data.
[40] The distribution of the estimated spurious trends

depends on space and season. Figure 9 shows month-
pressure sections at the polar region of the ensemble mean
of the estimated trend and the standard deviation of the

spurious trends for the first 20- and 50-year data. The
ensemble mean in the winter stratosphere is different from
the externally given trend (see Figure 3c), and the difference
is smaller for the 50-year data. The standard deviation of the
spurious trends is also large in the winter stratosphere,
indicating that the ensemble mean of the estimated trend
has a larger error than in the summer. The pattern of the
standard deviation is similar to that of the standard deviation
of the internal interannual variability (Figure 6a), and the
magnitude of the standard deviation for the 50-year data is
about (50/20)�3/2 � 0.25 of that for the first 20-year data.
These results are consistent with the theoretical result
(Equation 4).
[41] In middle and low latitudes the ensemble mean of the

estimated trends is not very different even for 20-year data
in all the season, and the standard deviation of the spurious
trend is also small (not shown).

4.3. Statistical Significance of Estimated Trend

[42] Hypothesis tests for statistical significance of the
estimated trends are performed for each cooling trend run.
We use the t test and the bootstrap test, and compare the
results with the more accurate test using the distribution
function derived by the Edgeworth expansion up to O(N�1)
(hereafter we call this test Edgeworth test).
[43] Figure 10 shows the statistical significance of the

linear trend estimated from the first 20-year data derived by

Figure 8. Same as Figure 7 but in July.

Figure 7. (a) Time sequences of the monthly mean polar
temperature at 12 hPa in January in all the 96 runs,
(b) histogram of the estimated trend from the first 20-year
data, and (c) that from the 50-year data. The vertical lines in
Figures 7b and 7c denote the value of the externally
imposed trends.
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the three tests in the run for which the difference between the
results by the t test and the Edgeworth test is largest. Here
the difference is defined as the number of grid points at which
the significance is higher than 99% by one test and lower than
99% by the other test. In the summer stratosphere, the
estimated linear trend normalized by the standard deviation
of the spurious trend, which is also estimated by (4) with the
20-year data for the t test and bootstrap test and with the
15,200-year data for the Edgeworth test, is large and it is
significant (>99%) in all three tests. The statistical signifi-
cance is not very different between these tests, though the t
test and bootstrap test overestimate the statistical significance
in April and May in the upper stratosphere.

[44] In winter, on the other hand, the normalized estimated
trend is small, because the internal variability is large. It is
impossible to obtain a statistically significant wintertime
trend estimation with 20-year data set.
[45] If the kurtosis of the internal variability is large and

the time series is not long enough, the t test cannot be used
because the assumption of a normal distribution of spurious
trend is not satisfied. Locations (height and month) where
this occurs are indicated by the symbol � in Figure 10a.
The t test shows the significance higher than 99% in May in
the upper stratosphere, but careful assessment is necessary
because of the large kurtosis. Indeed, the Edgeworth test
shows a smaller significance. Large values of the kurtosis

Figure 9. Meridional sections of (contours) the ensemble mean of the estimated trend and the standard
deviation (shading) of the spurious trend of the monthly mean polar temperature from (a) the first 20 and
(b) 50 years of data.

Figure 10. Meridional sections of the estimated trend (contours) and the statistical significance
(shading) of the estimated trend of polar temperature in one run derived by (a) the t test, (b) the bootstrap
test, and (c) the Edgeworth test. The estimated trend for the first 20 years is normalized by the standard
deviation of the spurious trend estimated by (4) with the sample standard deviation of the internal
variability in Figures 10a and 10b and by the standard deviation obtained by the control experiment in
Figure 10c. The light and dark shading represent regions with significance which is larger than 90% and
99%, respectively. The crosses in Figure 10a denote grid points at which the normal distribution
approximation is not valid because of large kurtosis.
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are also obtained in the winter lower stratosphere, though
the estimated trend is not significant due to large standard
deviation of the internal variability.

5. Discussion

[46] In the estimation of a linear trend from the real
atmospheric data, global and annual averaging has been
often applied to obtain a statistically significant result by
reducing the standard deviation of the internal variability.
However, internal interannual variations have large sea-
sonal dependence in the polar stratosphere as shown in
Figures 4 and 6. Estimation of a trend for limited space
and season might be important for studies of some
localized phenomena such as the ozone hole in spring
over Antarctica. Figure 11 shows height and seasonal
dependence of the Studentized estimated trend and its
statistical significance obtained from the NCEP/NCAR
reanalysis data [Kalnay et al., 1996] for 20 years from
1981 to 2000 and from the Berlin Free University strato-
spheric data [Labitzke et al., 2002] for 39 years from 1963
to 2001. As in the numerical result shown in Figure 10,
the normalized trend is large in the summer stratosphere
and the estimated cooling trend is statistically significant,
in both of the t test and the bootstrap test. The significance
is higher in the Berlin data than in the NCEP/NCAR data,
because of the longer data length, particularly from May to
July. Randel and Wu [1999] obtained similar height and
seasonal dependence of significant cooling of the polar
stratosphere by computing the mean temperature differ-
ences for the time segments between 1970s and 1990s.

[47] Labitzke and van Loon [1994] and Labitzke et al.
[2005] examined temperature trend with the Berlin data.
They noted that the trend can be appreciably different
depending on the segment of the data due to large fluctua-
tions on a decadal scale. In the winter stratospheric polar
region, as we have shown, the internal variability is so large
that the estimated trend has appreciable spurious component
and is not statistically significant. It is difficult to distin-
guish the signal of variations on a decadal scale from the
spurious trends due to the high frequency internal variabil-
ity. Therefore careful argument is necessary for the variation
of trends on a decadal scale.
[48] It is difficult to estimate moments of internal vari-

ability of the real atmosphere, such as the standard deviation
and kurtosis, because the time series of observed data is not
long enough; the error of the sample standard deviation is
about 10 to 20%, and that of the sample kurtosis is about 0.4
to 0.7 for the data length of 20 to 40 years (see section 3.2).
Significance derived by the t test may be untrustworthy
when the kurtosis of the internal variability is large and
erroneous, because we cannot assume that the spurious
trend has a normal distribution. On the other hand, the
Edgeworth test is not always more accurate than the other
tests, because the sample moments of the internal variability
may have considerable errors from the population moments.
This is the reason why the Edgeworth test was not applied
for the real atmospheric data sets in this study. Under these
circumstances, long integrations of state-of-the-art general
circulation models (GCMs) with purely periodic annual
forcing might be a useful way to estimate the moments of
the atmospheric internal variability. With the moments

Figure 11. Meridional sections of the Studentized estimated trend (contours) and its statistical
significance (shading) derived by the t test (Figures 11a and 11c) and bootstrap test (Figures 11b and 11d)
of the monthly mean polar temperature in (a and b) the NCEP/NCAR and (c and d) Berlin data.
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obtained by such a control experiment, approximate distri-
bution function of the spurious trend can be derived by the
Edgeworth expansion, and statistical significance of the
linear trend estimated with the real atmospheric data can
be tested by the Edgeworth test with the moments obtained
by GCM experiments.
[49] The internal variability of the monthly averaged

zonal mean temperature does not have large kurtosis in
summer when the estimated trend is statistically significant.
In the winter stratosphere, on the other hand, the variation
has a nonnormal distribution (Figure 4). Hio and Yoden
[2005] pointed out the importance of such nonnormal
distribution of stratospheric variability when they assessed
the rarity of the stratospheric sudden warming event in the
Southern Hemisphere firstly observed in 2002. In the
atmospheric variability, there are some other variations
having nonnormal distribution. For example, precipitation
approximately has Gamma distribution [e.g., Wilks and
Eggleston, 1992], wind speed approximately has Weibull
distribution [e.g., Conradsen et al., 1984; Pavia and
O’Brien, 1986], and extreme weather events such as heavy
rain or gusty wind approximately have extreme value
distributions [e.g., Gumbel, 1958]. Spurious trends of these
variations may have a nonnormal distribution, and the t test
may give an untrustworthy measure of significance. Statis-
tical significance of the estimated trend should be tested by
the Edgeworth test.
[50] Hare et al. [2004] examined stratospheric tempe-

rature trends by comparing two 5-member ensembles of
20-year Unified Model transient runs with or without a
linear ozone trend. They adopted a Student’s t test to
discuss the statistical significance of the difference of the
ensemble mean trend between the two ensemble runs, under
the prerequisite that the estimated trends in each ensemble
run have a normal distribution. This assumption can be
justified by the present theory stated in section 2: The
distribution of the estimated trend is normal when the
internal variability has a normal distribution or length of
data is large enough. They argued the distribution of the
internal variability was approximately normal. On the basis
of the statistics, they also discussed the ensemble size to
obtain significant estimate in the presence of large internal
variability. Similarly, our 15,200-year data set to study the
internal variability can be used to answer the question how
may years are needed to obtain significant linear trend in
the presence of large variability.
[51] Meehl et al. [2000] argued changes in extreme events

with the changes in the mean and standard deviation of
variability in the case that the variation has a normal
distribution. However, in order to discuss the changes in
frequency or intensity of these extreme events, one must
consider nonnormal distributions for each variability. Sta-
tistical considerations on the spurious trend in section 2,
particularly careful treatments on the tails of the distribu-
tions, might be useful for such arguments.
[52] Some atmospheric variations have a bimodal distri-

bution, such as the westerly or easterly phase of the
equatorial quasi-biennial oscillation (QBO). If we try to
apply the present method to such data sets, we have to
consider the mechanism that produces the bimodal distri-
bution. If there are multiple equilibrium states or regimes
which have the same response to a small change in external

forcing, the distribution of the internal variability is only
shifted without changing its shape. Then the present method
could be applied for the trend argument. More generally,
each regime may have independent response to the change
in external forcing. In such a case, the present method
cannot be applied. The trend argument should be much
more complicated.

6. Conclusions

[53] Distribution functions of a spurious trend due to
the finite length of data with random internal variability
were investigated theoretically and numerically. Here the
spurious trend was defined as the difference between an
estimated trend and the true trend caused by changes in
external conditions and parameters. Some moments and
distribution functions of the spurious trend were derived
theoretically in a simple linear trend model with random
internal variability. The moments of odd order are 0, and
the standard deviation is proportional to the standard
deviation of the random internal variability and decreases
approximately as N�3/2 for the increase of data length, N.
The kurtosis is proportional to the kurtosis of the random
internal variability and decreases approximately as N�1.
The distribution function of the spurious trend depends
on the distribution function of the internal variability. The
spurious trend has a normal distribution when the internal
variability has a normal distribution. For general cases of
nonnormal distributions, we derived the Edgeworth ex-
pansion of the distribution function of the spurious trend.
The distribution function converges to a normal distribu-
tion as N�1. By the Edgeworth expansion we can obtain
the approximate distribution function with a few low-
order moments of the internal variability. For example,
the standard deviation and kurtosis of the internal vari-
ability are needed for fourth-order accuracy.
[54] Some atmospheric variations have a nonnormal dis-

tribution; for example, the polar temperature in the winter
stratosphere shows highly skewed or bimodal distributions.
In order to examine such random internal variability, we
performed a long integration with a simple global circula-
tion model and 15,200-year monthly averaged zonal mean
temperature data were analyzed. The error of sample
moments estimated with finite length data sets was exam-
ined and the dependence of the estimation error on the data
length was obtained (Figure 5).
[55] We also investigated spatial and seasonal distribu-

tions of the moments of the internal variability. The
standard deviation in polar regions is large in the winter
stratosphere, while it is small in summer in the upper
stratosphere (Figure 6). The skewness and kurtosis are
large in the winter lower stratosphere and around 1 hPa
in May, so that the distribution of the internal variability
shows a nonnormal distribution.
[56] An ensemble experiment on spurious trend was

performed with the same model, in which the radiative
heating was assumed to have a linear cooling trend in the
stratosphere. The 96 runs for 50 years show that the
standard deviation of the spurious trend has similar pattern
to that of the standard deviation of the internal interannual
variability with the magnitude depending on the data length
(Figure 9), which is consistent with the theoretical result.
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The standard deviation of the spurious trend is large in the
winter polar stratosphere.
[57] Hypothesis tests for statistical significance of the

estimated trend were also performed by the t test and
the bootstrap test, and the results were compared with the
more accurate test with the distribution function derived
by the Edgeworth expansion (Figure 10). The statistical
significance is high in the summer upper stratosphere
where the internal variability is small, while the signifi-
cance is low in the winter stratosphere. The t test cannot
be used in the regions and seasons in which the kurtosis
of the internal variability is large, because the assumption
that the spurious trend has a normal distribution is
not satisfied. On the other hand, the test using the
Edgeworth expansion does not need any prerequisite for
the distribution.
[58] Possible application of the present statistical con-

siderations on the spurious trends to the changes in
frequency or intensity of extreme weather events was
discussed. Such variations are described by nonnormal
distributions, and careful treatment of the tails of distribu-
tion is necessary.

Appendix A: Spurious Trend by the Method of
Least Squares

[59] In the simple trend model represented by (1), let
estimators of a and b obtained by the method of least
squares be â and b̂, respectively. Then the sum of squares
of residual,

L ¼
XN
n¼1

X nð Þ � ânþ b̂

 �n o2

; ðA1Þ

satisfies

@L

@â
¼ �2

XN
n¼1

n X nð Þ � ânþ b̂

 �n o

¼ 0; ðA2Þ

@L

@b̂
¼ �2

XN
n¼1

X nð Þ � ânþ b̂

 �n o

¼ 0: ðA3Þ

After some algebra, we have

â ¼ S�1
nn

XN
n¼1

n� N þ 1

2

� �
X nð Þ; ðA4Þ

b̂ ¼ 1

N

XN
n¼1

X nð Þ � 1

2
N þ 1ð Þâ: ðA5Þ

Because of (1), we obtain

â ¼ aþ S�1
nn

XN
n¼1

n� N þ 1

2

� �
� nð Þ: ðA6Þ

Then the spurious trend a0, which is the difference
between â and a, is

a0 ¼ â� a ¼ S�1
nn

XN
n¼1

n� N þ 1

2

� �
� nð Þ: ðA7Þ

Appendix B: Edgeworth Expansion of Spurious
Trend

[96] We can derive the Edgeworth expansion of as
0

analogously to that of sample mean [e.g., Shao, 2003].
The ch.f. of as

0 is obtained as

ya0s
wð Þ ¼ E exp iwa0s


 �
 �
¼
YN
n¼1

y�

1

S
�1=2
nn s�

S�1
nn n� N þ 1

2

� �
w

 !
:

ðB1Þ

Because of the definition of cumulant,

logy� wð Þ ¼
X1
j¼1

1

j!
kj iwð Þj; ðB2Þ

ya0s(w) becomes

YN
n¼1

exp
X1
j¼1

1
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S�j=2
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2
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k32
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3200

k24
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iwð Þ8
� �
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�
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We consider a polynomial, Pl(w), which satisfies

ya0s
wð Þ ¼

ffiffiffiffiffiffi
2p

p
f wð Þ

X1
l¼0

Pl iwð ÞN�l: ðB5Þ

Then Pl(w) of the first three ls are

P0 wð Þ ¼ 1; ðB6Þ

P1 wð Þ ¼ 3

40

k4
k22

w4; ðB7Þ

P2 wð Þ ¼ 3

560

k6
k32

w6 þ 9

3200

k24
k42

w8: ðB8Þ

[97] Because of

Z 1

�1
ixð Þkf xð Þ exp iwxð Þdx ¼

ffiffiffiffiffiffi
2p

p dk

dwk
f wð Þ; ðB9Þ
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the cdf of as
0 is

Fa0s xð Þ ¼
X1
l¼0

Pl

d

dx

� �
F xð ÞN�l: ðB10Þ

We consider a polynomial, Ql(x), which satisfies

Fa0s xð Þ ¼ F xð Þ þ
X1
l¼1

Ql xð Þf xð ÞN�1
2
l: ðB11Þ

Then we obtain

Q2m�1 xð Þ ¼ 0; ðB12Þ

Q2 xð Þ ¼ � 3

40

k4
k22

H3 xð Þ; ðB13Þ

Q4 xð Þ ¼ � 3

560

k6
k32

H5 xð Þ � 9

3200

k24
k42

H7 xð Þ; ðB14Þ

where m is positive integer.

Notation

a true trend.
â estimated trend.
a0 spurious trend.
as
0 standardized spurious trend.
b constant term.
b̂ estimation of b.

E(x) expectation of x.
Fa0s

(x) cumulative distribution function of as
0.

fa0(x) probability density function of a0.
Hk(x) kth Hermite polynomial.

L sum of squares of residual.
N length of data set in year.

N(m, s2) normal distribution with mean m and standard
deviation s.

n time in year.
sa0 estimation of sa0.
Snn sum of squares of n subtracted its mean.
s� estimation of s�.
t Studentized spurious trend.

t(n) t distribution with degree of freedom of n.
We(a, b) Weibull distribution with scale parameter of a

and shape parameter of b.
wa 100a% percentile of Fa 0

s
(x).

X(n) observed data at time n.
za 100a% percentile of F(x).

b2a0 kurtosis of a0.
b2� kurtosis of �(n).
�(n) internal variability at time n.
kk kth cumulant of �(n).
s� standard deviation of �(n).
sa0 standard deviation of a0.

F(x) cumulative distribution function of standard
normal distribution.

f(x) probability density function of standard normal
distribution.

ya0(w) characteristic function of a0.
ya 0

s
(w) characteristic function of as

0.
y�(w) characteristic function of �.
c2(n) c2 distribution with degree of freedom of n.
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