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ABSTRACT

Chaotic mixing processes and transport barriers around the wintertime stratospheric polar vortex are inves-
tigated with an idealized barotropic model, previously used by Ishioka and Yoden. A barotropically unstable jet
is forced in order to obtain a fluctuating polar vortex. A flow with quasiperiodic time dependence and an aperiodic
flow with similar behavior are investigated using several Lagrangian methods.

A typical chaotic mixing process is observed in the quasiperiodic flow, resulting in effective mixing inside
and outside of the polar vortex. The mixing regions are on the critical latitudes of several planetary waves that
grow through barotropic instability. Poincaré sections give accurate locations of chaotic mixing regions, and
transport barriers are identified as the edges of invariant torus regimes. In addition to the transport barriers
associated with strong potential vorticity gradients, another type of transport barrier exists, which is not related
to the steep potential vorticity gradient.

Chaotic mixing is dominant also in the aperiodic flow. Comparing with the quasiperiodic flow, an aperiodic
flow with the same wave energy has a higher average Lyapunov exponent. This arises because the area involved
in chaotic zones increases. The evolution of the correlation function is also more typical of a chaotic zone.
Isolated regions are found near the center of the polar vortex, which can be explained by the invariant tori in
the Poincaré sections of the quasiperiodic flow. Implications of the results for the observed ‘‘4-day wave’’ in
the upper stratosphere are discussed.

1. Introduction

Dynamical processes of transport and mixing around
the wintertime stratospheric polar vortex have been ex-
amined in connection with the Antarctic ozone hole
(e.g., Schoeberl and Hartmann 1991). A transport barrier
exists at the edge of the polar vortex and air within the
vortex is isolated from outside. This type of polar vortex
is known as a ‘‘containment vessel’’ (Juckes and
McIntyre 1987; Schoeberl et al. 1992). Outside of the
vortex is a well-mixed region called the ‘‘surf zone,’’
where the potential vorticity (PV) is homogenized on
planetary wave breaking events; see McIntyre and Palm-
er (1983) and McIntyre (1989), who pointed out that
the barrier is associated with a steep gradient of PV by
the planetary wave restoring mechanism. Mixing occurs
also inside the vortex, but is not so strong as outside,
depending on hemisphere, altitude, and time of year
(Pierce et al. 1994; Waugh et al. 1994).

Studies on isentropic trajectories by using analyzed
winds (Bowman 1993) and three-dimensional models
(Pierce and Fairlie 1993) showed that chaotic mixing
occurs inside and outside of the vortex, respectively,
based on the exponential growth of material contours
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and the patterns of stretching and folding, although there
is some difficulty in removing the effect of irregular
behavior of wind field itself when applying theoretical
analyses of chaotic mixing to such realistic wind fields.
Chaotic mixing is a rather new concept introduced in
the 1980s (Aref 1984; Ottino 1989): it is an irregular,
stochastic behavior of Lagrangian motion of fluid par-
ticles in regular flows.

Pierrehumbert (1991a,b) applied the concept of cha-
otic mixing to geophysical flows; he investigated a plan-
etary wave motion with a small periodic perturbation
in a two-dimensional channel domain and showed the
evidence of chaotic mixing in the flow. Mixing in two-
dimensional nondivergent flows has been studied in re-
lation with Hamiltonian dynamics for fluid particles.
Some other kinematical studies motivated by atmo-
spheric and oceanic flows also revealed chaotic motions
of fluid in planetary waves (Samelson 1992; del-Cas-
tillo-Negrete and Morrison 1993; Duan and Wiggins
1996). However, discrepancy between time-periodic be-
havior of the velocity field and chaotic behavior of PV
gives rise to the question as to whether such kinematical
models are consistent with dynamically generated phe-
nomena. This is called the dynamical consistency prob-
lem (Ngan and Shepherd 1997). To get an answer to
the problem, Ngan and Shepherd (1997) used a vortic-
ity-conserving equation and investigated chaotic mixing
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and transport in a nonlinear Rossby wave critical layer
flow. They argued that the velocity is associated with
the coarse-grained vorticity and that the fine-grained
vorticity behaves as a tracer.

In this study, the stratospheric polar vortex is ideal-
ized as a solution with quasiperiodic time dependence
of a nondivergent barotropic model, and horizontal mix-
ing around the vortex is investigated. The time peri-
odicity enables us to use the same kind of analysis meth-
ods as in the kinematical studies of Hamiltonian dy-
namics. The flow field in our model has dynamical con-
sistency because it is obtained in a direct numerical
simulation of a full dynamical equation more akin to
the atmosphere than previous kinematical models. In
addition, the mixing process in the quasiperiodic flow
is compared with that in a more realistic aperiodic flow
of similar pattern that is obtained in the same model.

In the flows of our model, eastward propagating plan-
etary waves generated through barotropic instability are
dominant. The situation is close to that in the upper
stratosphere of the Southern Hemisphere where the 4-
day wave is often observed. The 4-day wave appears
in the upper stratosphere in winter (Venne and Stanford
1979), more evidently in the Southern Hemisphere than
in the Northern Hemisphere. It is dominated by zonal
wavenumbers from 1 to 4, traveling eastward with the
same phase speed. Observational and theoretical studies
are summarized in Allen et al. (1997), and Manney et
al. (1998). Hartmann (1983) examined linear stability
of idealized zonal jet profiles and pointed out that the
barotropic instability of the polar night jet can cause the
4-day wave. Manney et al. (1988) investigated the bar-
otropic instability of the observed jet profiles in the
Southern Hemisphere winter and found good agreement
with the characteristics of the observed wave. Bowman
and Chen (1994), and Orsolini and Simon (1995) in-
vestigated the mixing in barotropic models in which
unstable modes similar to the 4-day wave develop. They
used analytical jet profiles introduced by Hartmann
(1983) as initial conditions and examined transient evo-
lutions from the zonally symmetric flows. Here we use
the same kind of profiles as a zonally symmetric wind
forcing. The effects of the forcing maintaining the un-
stable jet and the dissipation corresponding to the ra-
diative damping are taken into consideration for a more
realistic situation in the winter stratosphere.

The two-dimensional barotropic model is described
in section 2. Analyses on the flow fields and the mixing
process comparing a quasiperiodic solution and an ape-
riodic one are shown in section 3. Discussion including
relevance to the real atmosphere is given in section 4,
and conclusions are in section 5.

2. Model

A model of a two-dimensional nondivergent flow on
a rotating sphere with forcing and dissipation is con-

sidered following Ishioka and Yoden (1995). The system
is governed by a vorticity equation:

Dq 2
25 2a(q 2 q ) 1 n ¹ 1 (q 2 q ), (1)0 021 2Dt a

where q is the PV (or, the absolute vorticity in this case),
defined as q [ ¹2c 1 2V sinf. Here, c is the stream-
function, ¹2 is the horizontal Laplacian operator, V is
the angular speed of the earth’s rotation, and f is lat-
itude. The first term on the right-hand side is a relaxation
term to a prescribed zonally symmetric 0 defined belowq
(hereafter overbar denotes zonal mean), which mimics
the radiative forcing of a zonally symmetric vortex mo-
tion. The relaxation time a21 is set to 10 days. The
second term is an artificial small viscosity with n 5 6.43
3 104 m2 s21, and a is the radius of the earth. The PV
is not conserved following the motion mainly by the
external forcing.

A spectral model with T85 truncation is used and the
advection term is computed with the transform method
of 1288 lat 3 2568 long grids. The fourth-order Runge–
Kutta method is used for time integrations with a time
increment of 1/80 day. We use the analytic form of the
forcing originally introduced by Hartmann (1983):

2(f 2 f )0u (f) 5 U cosf sech , (2)0 B

where U, B, and f0 are parameters characterizing the
polar night jet—U is a measure of intensity of the jet,
B its width, and f0 its position. It is converted to 0(f)q
in Eq. (1) through the relationship of 0 5 2V sinf 2q
(a cosf)21 d( 0 cosf)/df. Three types of solutions, timeu
periodic (steady wave), quasiperiodic (vacillation), and
aperiodic (irregular flow) ones, are obtained after long-
time integrations in Ishioka and Yoden (1995), depend-
ing on these three parameters. Regime diagrams in the
three-dimensional parameter space are given in Fig. 1
of Ishioka and Yoden (1995).

The model is integrated from an initial condition of
a zonally symmetric state 0. Initially a small pertur-u
bation is added and the perturbation grows in time if

0 is barotropically unstable. After the initial transientu
period, the flow settles into a state in which the forcing
to intensify the unstable jet and the disturbances grow-
ing from the instability are balanced. In other words,
the time-dependent solution falls into an attractor in
phase space—limit cycle for steady wave solution, torus
for vacillation, and strange attractor for irregular solu-
tion. We investigate the flow after 1000-day integration
to avoid the influence of the initial transience. The time
given in the figures is reset to zero at day 1000.

Trajectories of many fluid particles are computed si-
multaneously with the time integration of the flow field.
Spectral coefficients of the vorticity field, (t) (0 #mqn

| m | # n, n 5 1, 2, . . . , 85), and positions of the
particles, xi(t) (i 5 1, 2, . . . , I), are put into the Runge–
Kutta routine as one set of variables. The position of
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FIG. 1. Zonal mean zonal wind (f) and zonal mean PV (f) as a function of latitude for (a) andu q
(c) the vacillation and for (b) and (d) the irregular solution. The profiles at every 1/5 vacillation cycle
are drawn for the vacillation and at each day of 20 days for the irregular solution. The dashed lines
are the prescribed 0(f) and 0(f).u q

the ith particle is represented by longitude li and latitude
fi, which are determined by the following equations:

Dl u(l , f , t) 1 ]ci i i5 5 2 , (3)
2[ ]Dt a cosf a cosf ]fi l5l ,f5fi i

Df y(l , f , t) 1 ]ci i i5 5 , (4)
2[ ]Dt a a cosf ]l l5l ,f5fi i

where c can be obtained at anywhere through the in-
version of q at each step of the Runge–Kutta scheme.

3. Results

We used two parameter sets, (U, f0, B) 5 (180 m
s21, 508, 158) and (180 m s21, 508, 108), in this section.
While these parameter sets are close to each other, the
solutions are categorized into different regimes: the for-

mer parameter set gives a vacillation solution, and the
latter gives an irregular one. Some additional results
with different parameter sets are also examined in the
discussion section.

a. Flow fields

Zonal mean profiles of zonal flow and PV foru q
the vacillation and the irregular solution are shown in
Fig. 1. The dashed line represents the prescribed forcing

0 and 0. These parameter sets produce a narrow jetu q
centered on about f 5 508 (Figs. 1a,b), where the me-
ridional gradient of 0 has its maximum. The gradientq
of 0 is negative around f 5 358 and 608 (Figs. 1c,d).q
The prescribed profiles fulfill the necessary condition
for barotropic instability on both sides of the jet. The
flow after the initial transient period is a nearly balanced
state between the forcing and growing disturbances from
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FIG. 2. Power spectrum density of the time series data of PV (3V2 day) at a point on (l, f) 5 (08, 508) for (a) the vacillation and (b)
the irregular solution.

FIG. 3. Hovmöller diagrams of PV on f 5 508 of (a) all the wave components, (b) wavenumber-1
component, and (c) wavenumber-3 component.

the instability. The obtained jet is weaker and wider
than the prescribed one. The negative gradient of dis-q
appears on the equatorial side of the jet, and is nearlyq
constant between f 5 258 and 408 or 458. On the other
hand, the negative gradient remains on the polar side,
although it is weakened.

Figure 2 shows the power spectrum density of the
time evolution of PV value at a given position on (l,
f) 5 (08, 508). The time evolution in the vacillation is
quasiperiodic, and its spectrum (Fig. 2a) contains only
frequencies of f 1 5 0.290 day21, f 3 5 0.241 day21 and
their linear combinations, mf 1 6 nf 3 (m and n are in-
tegers). These frequencies are incommensurable and
correspond to the frequency of planetary waves of zonal
wavenumber 1 and 3, respectively, as described later.
The power spectrum density in the irregular flow is
shown in Fig. 2b. It is a continuous one with no specific
periodicity. Fluctuation with periods of about 4 and 8
days seems somewhat dominant among the high noise
level.

A Hovmöller diagram of f 5 508 for the vacillation
solution is shown in Fig. 3a. Two dominant components
are eastward-propagating wavenumbers 1 and 3. Each

component is shown in Figs. 3b and 3c. The angular
phase speed of wavenumber 1 is c1 5 2pf 1, and that of
wavenumber 3 is c3 5 2pf 3/3. Wavenumbers 1 and 3
are comparable in amplitude and the other components
are very small. Amplitudes of these waves are fluctu-
ating with a period of 1.59 day, through the interaction
between the waves and the zonal mean zonal flow. Flow
field for the vacillation is fundamentally composed of
the zonal mean jet and the two planetary waves. Figure
4 is the time evolution of the PV field on the corotating
frame with the mean angular speed of wavenumber 1;
its rotation period is 1/ f 1 5 3.45 days. Strong horizontal
gradient of PV on about f 5 508 is the edge of the
polar vortex, where the jet has its maximum, and PV is
roughly constant outside the vortex and close to the
zonal mean shown in Fig. 1c. On the corotating frame,q
wavenumber 3 pattern propagates westward with the
mean angular speed of 5 c3 2 c1 (e.g., see the in-c93
nermost contour line with triangular shape). Therefore,
the same PV field is repeated at every 2p/(3 | | ) 5c93
1.59 days. The quasiperiodicity is regarded as a com-
position of the vortex rotation with the period of wave-
number 1 (3.45 days) and the periodic variation of its
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FIG. 4. Time evolution of PV field at every 1/3 vacillation cycle, shown in a corotating frame with the mean angular speed of wavenumber
1 component. Contours are scaled by V. The maps are Lambert equal area projections, with the dashed lines of 308 and 608 latitude circles.
Small circles in (a) are the initial positions of the particles advected in Fig. 6.

shape with 1.59 days due to the slower phase speed of
wavenumber 3. Similar vortex rotation is also seen in
the irregular solution (not shown). The rotation period
is about 4 days. The PV field shows that planetary waves
spontaneously break in the irregular solution but break-
ings are small enough to keep the vortex shape, while
few planetary wave breakings are seen in the vacillation.

b. Finite-time Lyapunov exponents

Finite-time Lyapunov exponent is used as a local and
quantitative measure of mixing. The exponent gives the
exponential growth rate of the distance between two
nearby trajectories. Spatial distributions are examined
for some various evaluation times since it depends on
initial position and evaluation time. Numerically, the
singular vector method (Shimada and Nagashima 1979;
Goldhirsch et al. 1987; Geist et al. 1990) is used. Evo-
lution of two orthonormal small perturbations dx from
a point x is calculated for a given evaluation time t to
make a 2 3 2 matrix M such that

dx(t 1 t) 5 M(x(t ), t) dx(t ).0 0 0 (5)

The largest finite-time Lyapunov exponent l1 is de-
fined as

1
l (x(t ), t) 5 logs , (6)1 0 1t

where s1 and s2 are the singular values of M (s1 . s2

. 0). The pull-back method (Lichtenberg and Lieber-
man 1992) is used to remove nonlinear effects due to
amplification; the perturbations are deflated to 1/10
when one of them grows 10 times larger than the initial
amplitude and all deflation factors are multiplied back
at the end of the calculation.

Figure 5 shows the spatial distributions of the largest
finite-time Lyapunov exponents l1 for the vacillation
(Figs. 5a,b), and the irregular flow (Figs. 5c,d) for two
evaluation times of t 5 2 and 90 days. Calculations are
done on every 28 3 28 grid in the latitudes of f $ 208

with two small perturbations of angular length of 1026

rad in longitudinal and latitudinal directions. In the re-
sults of t 5 2 days (Figs. 5a and 5c), low value of l1

is seen on a ring corresponding to the edge of the polar
vortex. Areas of high value are on the both flanks of
the ring. The value is higher on the equatorial side than
on the polar side. These areas are affected by linear
deformation due to horizontal shear. The effect by cha-
otic behavior of the particles is not clear at this stage
because of the short evaluation time. For longer time
intervals of t 5 90 days, the ring of low l1 at the edge
of the polar vortex is less evident in the irregular so-
lution (Fig. 5d), while it is well identified even for t 5
90 days in the vacillation (Fig. 5b). The value inside is
lower than outside, which is consistent with previous
studies (e.g., Bowman 1993; Bowman and Chen 1994).
In the areas of high value, it varies at every grid; since
Lagrangian trajectory is sensitive to the initial position,
growth of the distance of two trajectories is also sen-
sitive to the initial position. Note also that for both
solutions l1 is quite low in low latitudes of f # 258
where PV has positive meridional gradient.

Spatial distributions of l1 for the both solutions show
large inhomogeneity inside the polar vortex. A large
triangular region with round corners in which the value
is very low is seen inside the vortex. The region is still
discernible in both solutions even t 5 90 days. In ad-
dition, a crescent-shaped region with low l1 is also seen
between the triangular region and the vortex edge iden-
tified as large PV gradient, particularly in the vacillation.

Quantitative arguments on the probability distribution
functions of the finite-time Lyapunov exponents will be
given in the discussion section together with some ad-
ditional results.

c. Macroscopic dispersion of particles

Two closed circles in Fig. 4a denote the points at
which the finite-time Lyapunov exponent for t 5 2 days
is highest inside and outside of the vortex, respectively.
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FIG. 5. Distributions of the largest finite-time Lyapunov exponent on a 28 3 28 grid for f $ 208 for (a) and (b) the vacillation and (c)
and (d) the irregular solution. Two evaluation times of t 5 2 days and t 5 90 days are used.

Initially we put 104 particles randomly in the circle cen-
tered on the points with a radius of 0.05 rad, and com-
puted their trajectories for 90 days in order to have
fundamental pictures of the mixing process.

Results for the vacillation are shown in Fig. 6. The
particles outside the vortex (Figs. 6a–c) are well mixed
in 90 days. At first, particles are stretched out to west
and east by the meridional shear of the jet. They become
distributed on a thin line element surrounding the polar
vortex. At the same time, the element is distorted and
folded at several places (Fig. 6a). Such stretching and

folding processes are repeated and the layered structures
of the particles are made (Fig. 6b). They are well mixed
within a zone between about f 5 258 and 458 (Fig. 6c).
This is a typical example of chaotic mixing process. The
well-mixed zone corresponds to the latitudes with nearly
constant PV shown in Fig. 1c. Two transport barriers
exist at both boundaries of the chaotic mixing zone. The
barrier at the polar-side boundary is on about 458, not
located on the polar vortex edge that is defined as the
largest meridional gradient of PV at each longitude. The
difference between the barrier and the vortex edge is
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FIG. 6. Advection of 104 fluid particles for 90 days in the vacillation from (a)–(c) outside the polar vortex and from (d)–(f ) inside, shown
in the same corotating frame as for Fig. 4. Initial positions of these particles are shown in Fig. 4a. Contours are the PV field.

about 108 at its maximum. Note that this barrier is not
perfect; a small number (;102) of the particles reach
near the vortex edge.

Particles inside the polar vortex are also mixed in a
similar way as shown in Figs. 6d–f. But they do not
spread all over the vortex inside. Two empty regions
exist even at t 5 90 day (f ). The shape of these regions
resembles that of low l1 shown in Fig. 5b; a triangular
region at the core of the vortex and a crescent-shaped
region. As described in the previous studies, the edge
of the polar vortex behaves as a transport barrier and
there is no particle exchange between inside and outside
of the vortex in the vacillation.

Figure 7 shows the results for the irregular solution.
Stretching and folding processes very similar to those
in the vacillation are seen on the both sides of the vortex.
Combined with the positive Lyapunov exponents, cha-
otic mixing dominates the large-scale mixing process.
Compared with Fig. 6c, particles outside the vortex
(Figs. 7a–c) are mixed in a larger area, and the distri-
bution is more uniform, which is consistent with the
results of the finite-time Lyapunov exponents shown in

Fig. 5d. The difference between the transport barrier
and the vortex edge found in Fig. 6c disappears in the
irregular solution; the transport barrier is located just
on the vortex edge. Particles inside the vortex (Figs. 7d–
f) are mixed more rapidly and more effectively than in
the vacillation. However, some empty regions remain
even after 90 days, although the areas are much smaller
than those in the vacillation. In addition to a triangular
region and a crescent-shaped region, three small ‘‘is-
land’’ regions surround the triangular region. While
planetary wave breaking events make a small amount
of the particles go outside of the vortex for 90 days,
there are no incoming particles from outside during the
period.

d. Correlation dimension

Correlation functions for the particle distributions ob-
tained in section 3c are computed to diagnose the time
evolution of the particle dispersion and mixing quan-
titatively (Pierrehumbert 1991a,b). Two-particle corre-
lation function is computed as the cumulative histogram
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FIG. 7. As in Fig. 6 but for the irregular flow.

H(r) for the distance r between all pairs of the 104

particles, and correlation dimension is defined as d log
H(r)/d log r, which gives a fractal dimension of the
particle distribution. In two-dimensional flow, well-
mixed particles should have a dimension close to 2,
while particles aligned on a line have a dimension close
to 1. It gives information of the scale on which mixing
(or two-dimensionalization of the particle distribution)
has occurred. Here we use angular distance w instead
of r on the spherical geometry.

Figures 8a,b show the time evolution of the corre-
lation dimension as a function w for the particles in the
vacillation of Fig. 6. The dimension is 2 at t 5 0 day
for small w because the initial positions of the particles
are random in the small area. Outside the polar vortex
in the vacillation (Fig. 8a), the dimension gets closer to
1 within 30 days owing to the initial stretching effect.
After that, the dimension increases from 1 to 2, implying
that the distribution is approaching two-dimensional.
The increase of dimension occurs from larger scales,
down to smaller scales; macroscopic mixing precedes
microscopic mixing. The dimension estimated at t 5 90
days is about 1.8 on the scale of w , 0.2, which is
about the meridional width of the mixing zone. This
result is typical of chaotic mixing and has an opposite
character from diffusive or turbulent mixing. This is

consistent with the kinematical results obtained by Pier-
rehumbert (1991a,b). On the other hand, such charac-
teristics are not obtained inside the vortex (Fig. 8b). The
dimension has little change on the small scale of w ,
1023, while that on the larger scale is about 1 for 90
days. It is due to the existence of two large empty re-
gions, which reduce the mixing region.

Time evolutions of the correlation dimension for the
irregular flow shown in Figs. 8c,d are not so different
between outside and inside. The distributions become
close to one-dimensional in 30 days, followed by mixing
in the larger scale. The characteristics of chaotic mixing
are seen more evidently in this irregular flow than in
the vacillation, although the dimension on w , 1023 is
1.5 even after 90 days.

e. Poincaré section

As seen in Fig. 4, the only thing we can see on the
corotating frame with wavenumber 1 is the periodic
variation of vortex shape with the vacillation period.
Poincaré sections are available in this corotating frame.
Trajectories of several particles are calculated for a long
integration time, and the positions at every one vacil-
lation cycle are all plotted on one figure.

Figure 9 shows the Poincaré sections computed for
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FIG. 8. Correlation dimensions for the particle dispersion shown in Figs. 6 and 7 as a function of the angular distance w. (a) The
vacillation, outside the polar vortex; (b) the vacillation, inside; (c) the irregular flow, outside; and (d) the irregular, inside.

1000 vacillation cycles with 12 particles initially put
outside the polar vortex (Fig. 9a), and 19 particles inside
the vortex (Fig. 9b). Regions where particles have cha-
otic, irregular trajectories are the chaotic mixing regions,
while regular trajectories are seen in the regions of in-
variant tori where the fluid is not mixed but only stirred.
Outside the polar vortex (Fig. 9a), chaotic mixing region
is recognized in midlatitudes. It is wider than the mixing
region shown in Fig. 6c because of the longer integration
period. Closed dashed lines found at the both sides of
the mixing zone are invariant tori. The one inside the
mixing zone (blue, dashed line) coincides with steep PV

gradient at the polar vortex edge. Another crescent-
shaped torus is also found just outside of the edge (red
line). Now, the difference between the transport barrier
and the vortex edge found in Fig. 6c is explained by
the existence of this crescent-shaped torus. Another cha-
otic mixing region is found inside the polar vortex (Fig.
9b) with more complicated structure of invariant tori.
A crescent-shaped torus corresponds to the empty region
of similar shape found in Fig. 6f, while the almost empty
region of the triangular region in Fig. 6f is filled with
chaotic trajectories and three groups of invariant tori:
1) central region of the polar vortex (green, solid loop);
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FIG. 9. Poincaré section of the particles for the vacillation with (a) 12 points initially located outside the vortex, and with (b) 19 points
located inside.

FIG. 10. Stagnation points (bullets) and streamlines connecting the points (thick lines) for the vacillation. These are obtained from the
streamfunction field for the zonal mean plus one wave component viewed from an appropriate corotating frame: (a) wavenumber 1 with the
frame of angular speed c1, (b) wavenumber 3 with c3, and (c) wavenumber 4 with c4.

2) three ‘‘islands’’ surrounding the central region, which
are identified with three red loops; and 3) four thin
islands just outside the three islands. These are transport
barriers of different types from the polar vortex edge
that are not related to any steep PV gradient.

f. Critical latitudes

Stirring and mixing in a wavy flow field are often
explained by the nonlinear behavior of fluid particles in
a critical layer. Stagnation points are located on the crit-
ical line where the flow speed is identical to the phase
speed of a single sinusoidal wave, and trapped regions
with closed streamlines connecting the stagnation points

are called ‘‘cat’s eyes’’ (Stewartson 1978; Warn and
Warn 1978). Perturbed cat’s eyes are the place where
stirring and mixing occur. Polvani and Plumb (1992)
pointed out that mixing takes place around a stagnation
point near the polar vortex. The mixing around the polar
vortex is also explained by the existence of critical lat-
itudes of planetary waves in some cases (Bowman
1996).

Although the flow field is more complicated in the
present vacillation solution, explanation by stagnation
points and cat’s eyes on a critical latitude is possible by
decomposition into zonal wave components. Figure 10a
shows stagnation points and streamlines connecting the
points for the zonal mean and wavenumber-1 compo-
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FIG. 11. (a) Advections of fluid particles in the irregular flow initially put at t 5 90 day. Results at (b) t 5 120 days and (c) t 5 180 day
are shown.

nents on the comoving frame with c1, the phase speed
of the wavenumber 1 component. Critical latitudes are
located on both sides of the jet. Closed streamlines in-
side the two pairs of homoclinic orbits correspond to
two invariant crescent-shaped tori just inside and outside
of the vortex edge in Fig. 9. The same plots for wave-
numbers 3 and 4 are shown in Figs. 10b,c, respectively.
The frequency of the wavenumber 4 is f 4 5 f 1 1 f 3

5 0.531 day21, corresponding to the third highest peak
in Fig. 2a. The critical latitude of the wavenumber 3 on
the polar side is on about 708. That of the wavenumber
4, on about 658, is closer to the jet since c3 , c4 5
2pf 4/4. These two latitudes coincide with the latitudes
of three and four islands of invariant tori, respectively,
as shown in Fig. 9b. Such island structures correspond-
ing to the cat’s eyes on the equatorial side of the jet
core are hard to find in the Poincaré section of Fig. 9a.

g. Transport barriers inside the polar vortex

The method of Poincaré section cannot be used for
irregular solutions, but some features obtained in the
Poincaré section for the vacillation have correspondence
with empty regions found in the irregular solution (Fig.
7f); isolation of the central region of the polar vortex,
the crescent-shaped region, and the three islands sur-
rounding the central region. The isolation of these re-
gions in the irregular solution is examined by computing
dispersion of particles from these regions as shown in
Fig. 11. Initial positions of five blobs of 104 particles
at t 5 90 day (Fig. 11a) are set in the same manner as
in section 3c. The particles put in the very center of the
triangular region (orange) do not disperse and stay to-
gether in 90 days, and those put in the limb of the
triangular region (brown) are elongated to a ring by
shear dispersion but are not mixed. Thus, the triangular
central region is well isolated from the surroundings
inside the polar vortex. When put in the crescent-shaped
region (blue), the particles are stretched and a part of
them are mixed with the surroundings. However, more

than half of them stay in the same region and keep
clustered for 90 days. The three small island structures,
two of which are marked with red and green particles,
are also still discernible after 90 days, although some
parts of particles spread out within the polar vortex. The
three islands are treated as one torus regime in the Poin-
caré section, but the fluid particles of the three islands
are not mixed up together unless they go out to the
mixed region.

4. Discussion

Pierrehumbert (1991a) investigated chaotic mixing in
a kinematically determined flow in a channel by com-
puting finite-time Lyapunov exponents and Poincaré
sections. The results, Fig. 5 in Pierrehumbert (1991a),
show the chaotic mixing regions on both sides of the
meandering jet, and several regions of invariant tori are
seen in the midst of the chaotic region. It is impossible
to find any relationship between these regions and large
horizontal gradient in the vorticity field. These invariant
tori have correspondence with the central region of the
vortex and the crescent-shaped torus inside the polar
vortex shown in Fig. 9b. In Pierrehumbert (1991a), these
invariant tori are found on both sides of the jet due to
the symmetrical channel geometry, while most of them
are inside the circumpolar jet in this study due to the
spherical geometry.

McIntyre and Palmer (1983) originally used PV maps
on an isentropic surface to diagnose large-scale hori-
zontal mixing processes in the winter stratosphere with
observational data, and Juckes and McIntyre (1987) did
similar diagnosis of planetary wave breaking obtained
with one-layer spherical model. When planetary waves
break, mixing by two-dimensional turbulent flow takes
place outside the polar vortex, which results in homog-
enization of PV. Meridional gradient of PV becomes
large at the boundaries of the mixing zone to sharpen
the vortex edge. A transport barrier that obstructs mass
exchange between the polar region and the midlatitudes
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FIG. 12. Histograms of the largest finite-time Lyapunov exponents
calculated on f $ 208 for five runs for the parameter sets listed in
(a) for U, f0, and B. The scale of the ordinate is in proportion to the
corresponding area since a weight of cosf is multiplied in counting
each grid point. Open symbols are for vacillation while closed ones
are for irregular solutions.

FIG. 13. Relationships (a) between the mean Lyapunov exponents at t 5 2 days and the maximum speed of
the zonal mean zonal wind, (b) between the mean Lyapunov exponents at t 5 2 days and maximum horizontal
shear inside the vortex, and (c) between the mean Lyapunov exponents at t 5 90 days and total wave energy
over the whole region. The symbols are identical to those used in Fig. 12 for the five runs.

is produced at the vortex edge with large PV gradient
by the planetary wave restoring mechanism. On the oth-
er hand, our results provide another situation of pro-
ducing a transport barrier. Effective mixing occurs in
the quasiperiodic vacillation solution without any tur-
bulent, stochastic motion by planetary wave breakings.
It should be noted that chaotic mixing in a quasiperiodic

solution is possible since PV is not conserved in this
forced-dissipative system. Not only a transport barrier
corresponding to the large gradient of PV but other iso-
lated regions that are not explained by PV gradient are
also found. These kind of transport barriers are located
on the boundary between a chaotic mixing region and
a regular invariant torus, which was originally found by
Pierrehumbert (1991a,b) with a kinematical model. Ir-
regularity of the flow is not the essence of these barriers
because they are found in both vacillation and irregular
solutions.

In the previous section, various aspects of the mixing
process around the polar vortex are compared between
the two nearby solutions in the parameter space, that is,
the vacillation and the irregular solution. However, time
periodicity does not seem to be a unique factor deter-
mining the mixing characteristics. For example, the
maximum wind speed and meridional shear of the zonal
mean jet are rather different between the two solutions
as shown in Fig. 1. By three additional runs, we obtained
one more vacillation solution for the parameter set of
(U, f0, B) 5 (210 m s21, 508, 158) and two more ir-
regular one for (150 m s21, 508, 108) and (210 m s21,
508, 108). Histograms of the Lyapunov exponents are
made for the distributions shown in Fig. 5 and those for
the three additional runs are examined. Note that the
histograms are made by multiplying a weight of cosf
to the count of grids in order to account for the smaller
size of the grid boxes at high latitudes.

Figure 12a shows the histograms for a short evalu-
ation time of t 5 2 days for two vacillation solutions
(open marks) and three irregular ones (closed marks).
The distribution is different between the two types of
solutions; vacillation solutions have a peak near l1 5
0.8, while irregular ones have rather flat distribution for
l1 , 1.0. Figures 13a,b shows a high correlation be-
tween the mean l1 for t 5 2 days and the maximum
wind speed, and between the mean l1 and the meridional
wind shear of the zonal mean jet; the mean Lyapunov



2628 VOLUME 58J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

exponent is larger as the jet is stronger with larger shear.
The correlation becomes low if we take a longer eval-
uation time. As for such a short time interval, it is plau-
sible to think that the key factor to determine the mixing
properties is not the time periodicity but the horizontal
shear of the jet.

Some differences are also found between the vacil-
lation and the irregular solutions for a long evaluation
time of t 5 90 days as shown in Fig. 12b. Generally
there are two peaks near l1 5 0.04 and 0.2. The lower
one corresponds to the regular (torus) regions, which
shifts to zero as t increases. On the other hand, cluster
of the higher value is associated with the chaotic re-
gions. These distributions are consistent with the results
of Pierrehumbert (1991a). The cluster of the higher val-
ue is dominant in the irregular solutions. It might be
expected that the distribution might be more directly
related to the area of chaotic region or amplitude of
wave disturbances than the time periodicity. However,
Fig. 13c shows that the mean l1 for t 5 90 days of the
irregular solutions has higher values than those of the
vacillation; even when wave energy is the same, mixing
in the aperiodic flows is stronger than that in the qua-
siperiodic flows.

Dynamical systems theory based on Hamiltonian sys-
tem (Ottino 1989; Wiggins 1992) can be applied to
large-scale flow in the stratosphere by idealizing the
flow as two-dimensional, quasiperiodic flow. Our results
are consistent with the theory that effective, irreversible
mixing occurs even when the flow is only vacillating
with small amplitude. Poincaré sections determine cha-
otic mixing regions and invariant tori, which give pre-
cise locations of well-mixed regions and transport bar-
riers. Lobe dynamics using stable and unstable mani-
folds of hyperbolic trajectories around stagnation points
is another way of understanding transport and mixing
(Malhotra and Wiggins 1998) and it could be applied
for the present idealized stratospheric flow.

The atmosphere is influenced by diabatic processes
and small-scale three-dimensional turbulence enabling
cross-isentropic flow and a departure from the idealized
two-dimensional picture studied here. These can change
large-scale mixing process quantitatively and qualita-
tively. Our results will be relevant to the real atmosphere
of small departure from the idealized situation such that
the variations of planetary waves are nearly periodic
and the interactions between the waves do exist but are
small. Therefore, the wintertime upper stratosphere in
the Southern Hemisphere is an interesting region from
the viewpoint we obtained in this study, where the 4-
day wave caused by barotropic instability of the polar
night jet is dominant and turbulent mixing due to break-
ings of the planetary waves propagating upward from
the troposphere is considerably weak. For applying our
results to the real atmosphere, more estimation of the
relative importance of the turbulent mixing to the cha-
otic mixing is required since there are differences in the

mixing behavior between the quasiperiodic and aperi-
odic flows.

5. Conclusions

Chaotic mixing in dynamically consistent flows ob-
tained as numerical solutions of the barotropic vorticity
equation was investigated. The barotropic model is a
forced-dissipative system that simulates an idealized po-
lar vortex that has similar characteristics to the winter-
time upper stratosphere. A quasiperiodic solution and
an aperiodic solution were obtained with slightly dif-
ferent parameter values, and the analysis results were
compared to examine the usefulness of the concept of
chaotic mixing even in more realistic irregular flows.

A typical example of chaotic mixing is obtained for
the quasiperiodic flow. Effective, irreversible mixing oc-
curs through stretching and folding process outside of
the polar vortex, and inside as well (Fig. 6). As described
in the previous studies of the polar vortex (e.g., Bowman
and Chen 1994), the mixing process is characterized
quantitatively by positive values of Lyapunov exponents
(Figs. 5 and 12), and one transport barrier coincides
with the edge of the polar vortex where the PV gradient
is large. However, transport barriers that are not related
to the steep PV gradient are found inside the polar vor-
tex. These are identified more precisely with the isolated
island structures (invariant tori) in the Poincaré sections
(Fig. 9). They are situated around the critical latitudes
for the dominant planetary wave components of the vac-
illation. These planetary waves are excited by forcing
toward a barotropically unstable state. Fluid is isolated
within the cat’s eye structures along each critical line,
but particles around the islands, in the chaotic zones,
are mixed by fluctuations of the cats’ eyes.

Our results are obtained in a dynamical simulation of
the polar vortex, while a similar isolated pattern is also
seen in the kinematical study of Pierrehumbert (1991a).
Such a finescale structure is only inside the polar vortex,
because of the asymmetry due to our spherical geom-
etry. Furthermore, it is revealed that the structure ob-
tained in the quasiperiodic flow is relevant to flows that
are weakly aperiodic (Fig. 7). Isolation of several re-
gions inside of the polar vortex is confirmed by the
additional experiment of particle dispersion (Fig. 11).
Correlation dimension in the irregular solution shows
more typical evolution of the chaotic mixing (Fig. 8).
And even when wave energy is the same, finite-time
Lyapunov exponents become higher in the irregular so-
lution than in the vacillation (Figs. 12, and 13).
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