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Polarity reversal of the 
geomagnetism

Periodic variation of sunspot
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Stellar convection and dynamos



Vortex structure, large-scale magnetic field
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Structure formation　

What suppresses turbulent viscosity and/or anomalous 
resistivity?

Suppression of cascade

Breakage of symmetry



Global magnetic fields  
of galaxies

Galactic magnetic field

Origin of galactic magnetic field

Magnetic-field strength

Toroidal magnetic field 
is observable

Magnetic field configuration in galaxy (M51)
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降着円盤

伴星

コンパクト天体

Accretion Disks

Astrophysical body Compact object
Young stellar object Protostar

Cataclysmic variables White dwarf

X-ray binaries Neutron star
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Active galactic nuclei Supermassive black hole
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Conditions for accretion:　Angular momentum loss
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Jet from AGN 3C348

Toroidal magnetic-field generation 
due to the cross-helicity effect

Rotation (Vortical motion)

Driving jet by magnetic energy

Astrophysical jets

Bipolar jets

Mechanism for driving jet

High collimation

Magnetic confinement?
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Solar Winds
High-speed plasma flow from stars

Inhomogeneous turbulence 
with cross helicity (velocity–
magnetic-field correlation)



cross correlation and Alfvén ratio
against heliocentric distance
(Roberts et al. 1990)
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(ii) Cross-helicity

Normalized cross helicity

As the heliocentric distance increases

cross helicity decreases to
small value of 0.1~0.3

• Low-speed wind
from lower-latitude regions
strong velocity shear

cross helicity remains to be relatively 
large value of 0.4~0.7

• High-speed wind
from higher-latitude regions
weak velocity shear

solar wind
(Ulysses mission, 1991-1996)
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Magnetic activity of the Sun
Solar sunspot

Periodic behaviour 
of sunspot number

Toroidal magnetic field

What generates and sustains the solar magnetic field

Periodic variation 
of magnetic field

Fluid plasma motions in the Sun

Polarity reversal

Emergence of strong magnetic field
(thousands G)

Periodic variation of sunspot
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Solar interior

Radiative zone

Convective zone

Core

Motion in the 
convective zone

Solar 
magnetic field

Thermal fusion

Approximately rigid rotation

Differential rotation

Turbulent 
electromotive force



Okamoto,
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Geomagnetism

Polarity reversal of the geomagnetism

Polarity reversal of geomagnetic field

Magnetic energy >> Kinetic energy

Irregular

Motion of melted iron
in the outer core

Only poloidal magnetic fields 
are observable
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Fusion plasmas
Reversed field pinch

Tokamaks

Helical systems
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Mean-field equations in compressible MHD
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Turbulence properties 
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Turbulence

Simple picture of cascade

Nonlinear

Dissipative

Cascade

Local vs. non-local
Homogeneous
vs. inhomogeneous

Isotropic vs. anisotropic

Anomalous transport
ε2/3k-5/3

kd=2π/η kc=2π/C 

E(k,t) 

k 

inertial 
subrange 

energy 
cascade 

Equilibrium vs. non-equilibrium



Effects of turbulence

Laminar pipe flow

Turbulent pipe flow

Instantaneous Mean

Large-scale structure destroyed



: eddy viscosity (turbulent viscosity)

Reynolds stress (Model)

(Boussinesq, 1877)

Turbulent

Laminar
Equation of mean velocity

Enhancement of transport

Variation in space and time

Enhancement of transport

(Turbulent viscosity)
(Molecular viscosity)

dashed line, Re=5,600; solid line Re=13,750

DNS of turbulent and viscous stresses



Turbulent swirling pipe flow
Uz

Uz

Uθ

Uθ

r

r
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θ

θ

Axially rotating turbulent pipe flow

(Imao et al. 1996)

Swirling flow in a circular pipe

These flow properties cannot be reproduced 
by the standard eddy-viscosity representation at all.
Too much dissipative.

Suppression of transport

Turbulent



(Steenbergen, 1995)Axial evolution of a weak swirl
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Equation of fluctuating velocity

turbulence–mean velocity
interaction

turbulence–turbulence
interaction

Linear in     and      ,   each (Fourier) mode evolves independently

Homogeneous turbulence, no dependence on large-scale inhomogeneity

Instability approach

Closure approach

Quasi-linear -> nonlinearity

Homogeneous isotropic -> inhomogeneities



Navier–Stokes equation in the wave-number space

The dynamics of k mode is governed by its interaction with 
all other modes

ε2/3k-5/3

kd=2π/η kc=2π/C 

E(k,t) 

k 

inertial 
subrange 

energy 
cascade 

(integral scale) (viscous scale)
Largest scale Smallest scale

All the scales, from the 
largest to smallest scales, 
have to be solved

Homogeneous and 
Isotropic Turbulence
(HIT)

Energy injection

Energy dissipation

Energy flux



Integral scale

Kolmogorov microscale



Scale differences

Length

Velocity

Time



Required grid points

(integral scale)

(viscous scale)

Walking

Cars

Airplanes

Earth’s outer core
Solar convection
zone
Galaxies

Largest and smallest scales in turbulence

Largest scale

Smallest scale

(Largest scale)
(Smallest scale)

Re NG Re NG

Direct numerical simulation (DNS) is just impossible in the foreseeable future



Theoretical formulation



Approaches to turbulence



Equation of fluctuating velocity

turbulence–mean 
interaction

turbulence–turbulence
interaction

Linear in     and      , each (Fourier) mode evolves independently

Homogeneous turbulence, no dependence on large-scale 
inhomogeneity

Instability approach

Closure approach

Quasi-linear theory (+ non-linearity)

Homogeneous turb. theory (+ multiple scale)



Nonlinearity



Response function
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with a (schematic) set of equations

LQαβ (k; t, t ′)

LGαβ(k; t, t ′)

⎫
⎬

⎭ = Functional of Q
(L)
αβ and G

(L)
αβ , (229)

whereQ(L)
αβ is the correlation function based on u(L).

Corresponding to the symbolical representations of Fig. 14, we introduce the
symbolical representations of the second-order velocity correlationsQab(k; t, t ′) as
in Fig. 19. With Fig. 19, we calculate Qab(k; t, t ′) up to O(M2) in a perturbational
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Perturbation expansion with respect to the non-linearity 
from a Gaussian random state at the infinite past

Renormalised perturbation expansion theory

Velocity

Response functionVelocity

Kraichnan, R. H. (1959) “The structure of isotropic turbulence 
at very high Reynolds number,” J. Fluid Mech. 5, 497



Formally integrate this with regarding the non-linear part as known

with

SMALL-SCALE TURBULENCE 53 
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Figure 3.2. Symbolical representation of the constituent elements in Eq. (3.88). 
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Figure 3.3. Diagrammatic representation of Eq. (3.88). 

g(kj t, t') = H(t - t') exp ( _vk2(t - t')) . (3.90) 

Here A(k) is a random variable, and H(t) is the unit step function that 
is 1 and 0 for t > 0 and t < 0, respectively. We can replace the forego-
ing assumption about the infinite past with the Gaussianity at an initial 
time and make the discussion entirely similar to the following one. What 
is important under these circumstances is to find a turbulent state that is 
independent of the initial or past condition, for the assumption about the 
Gaussianity is a big one. 

Let us solve Eq. (3.88) in a perturbational manner with v(kj t) as 
the leading term. A method of performing this perturbation is to use 
its diagrammatic representation (Wyld 1961). We express u(kj t), V(k; t), 
g(kj t, t'), and iMijl(k) symbolically, as in Fig. 3.2. Then Eq. (3.88) may 
be represented by Fig. 3.3. The part iMijl(k) is usually called the vertex, 
specifically, the bare vertex (the meaning of "bare" will be clear later). The 
time integration such as dtl is attached to the vertex part. The pertur-
bational solution of Fig. 3.3 may be given by Fig. 3.4. Here the numerical 
factor "2" in the third term comes from the fact that the nonlinear part in 
Fig. 3.3 is symmetric with respect to Uj(Pjtl) and Ul(qjtl). 

B. Calculation of Velocity Variance 
We use Fig. 3.4 and calculate the velocity variance (ui(kj t)uj(k'j t')). Here 
we make full use of the assumption that A(k) or, equivalently, v(kj t) is a 

We assume that turbulence is in a Gaussian or random state with high turbulence 
intensity in the infinite past, and statistically stationary or quasi-stationary at present.

Turbulence state that is independent of the initial or past condition

Velocity equation

Heaviside step function
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Solve this equation in a perturbative manner with v(k;t) as the leading term:
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Integrate this with respect to k’ with putting

The response generated by adding an infinitesimal disturbance 𝛿f(k;t) to 

The response function equation is written as

Response function equation



Formally integrate this with regarding the r.h.s. as known

where 
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Figure 3.13. Diagrammatic representation of Eq. (3.103). 

GYo; (k; t, t') = Dij(k)g(k; t, t'). 

59 

(3.104) 

In Eq. (3.103), we should note that the lower limit of the time integral is 
not -00 but t', owing to 8(t - t') in Eq. (3.102). Moreover, we rewrote the 
right-hand side of Eq. (3.102) as 

2iDin(k)Mnlm(k) II t')8 (k - p - q)dpdq, (3.105) 

using the last of Eq. (3.27). 
For Gij (k; t, t'), GVij (k; t, t'), and the ensemble mean of the former de-

fined by 
(3.106) 

we also introduce the symbolical representations, as in Fig. 3.12. Corre-
sponding to Fig. 3.3, Eq. (3.103) may be expressed as Fig. 3.13, and its 
perturbational expansion up to O(M2) is given by Fig. 3.14. Here we should 
note that the viscous Green's function in Fig. 3.4 for u(k; t) is g(k; t, t') 
but not GVij (k; t, t'). The sole difference between them, however, is the 
solenoidal operator Dij(k) , as is seen from Eqs. (3.90) and (3.104). In 
Fig. 3.4, g(k; t, t') can be replaced by GVij (k; t, t') with the aid of the last 
of Eq. (3.27). 

The calculation of Gij(k; t, t') up to O(M2) is simple, which leads to 
Fig. 3.15. From the renormalization based on both the exact velocity vari-
ance and Green's function, Qij(k; t, t') and Gij(k; t, t'), we have Fig. 3.16. 
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note that the viscous Green's function in Fig. 3.4 for u(k; t) is g(k; t, t') 
but not GVij (k; t, t'). The sole difference between them, however, is the 
solenoidal operator Dij(k) , as is seen from Eqs. (3.90) and (3.104). In 
Fig. 3.4, g(k; t, t') can be replaced by GVij (k; t, t') with the aid of the last 
of Eq. (3.27). 

The calculation of Gij(k; t, t') up to O(M2) is simple, which leads to 
Fig. 3.15. From the renormalization based on both the exact velocity vari-
ance and Green's function, Qij(k; t, t') and Gij(k; t, t'), we have Fig. 3.16. 
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Figure 3.14. Perturbational expansion of Eq. (3.103) up to O(M2). 

Corresponding to Fig. 3.16, we renormalize Fig. 3.8 concerning Gij(k; t, t'), 
and reach Fig. 3.17. The resulting system of equations keeps the terms that 
cannot be included through the renormalization of only the velocity vari-
ance. Really, we have Fig. 3.10 by substituting the second term of Fig. 3.15 
into the third one of Fig. 3.17. 

t t' 
'V\I\NV\, = 

Figure 3.15. Mean Green's function up to O(M2). 

Figure 3.16. Renormalization of Fig. 3.15. 

E. DIA System of Equations 
The diagrammatic equations in Figs. 3.16 and 3.17 are written explicitly 
as 

Qij (k; t, t') = QVij (k; t, t') + 2 J J 8 (k - p - q)dpdq 

t t' 
x Mabc(k)M/de(k) ioodt1 ioodt2GVia (k; t, tl) 

Perturbation expansion up to O(M2)



DIA = line (propagator) renormalisation (lowest-order in vertex) 

fex(x) =
1

1� x
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Truncation
Renormalisation fex(x) = 1 + xfex(x)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

fex(x) = 1 + x+ x2 + x3 + · · ·
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

fex(x) = 1 + x(1 + x+ x2 + · · · )
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

fex(x) = 1 + x(1 + x)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>Turbulence, Transport and Reconnection 229

Fig. 22 Vertex term of O(M4) not included

= + 2

+ 4

+ 4

t t' t t' t t1 t2 t'

t t1 t2 t'

t' t1 t2 t

D

D D

D

Fig. 23 Renormalisation of the correlation in Fig. 20
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Fig. 24 Renormalisation of the mean Green’s function in Fig. 21

Qαβ (k; t, t ′) and Gαβ (k; t, t ′). Namely, in the perturbation expansion, not all the
interactions (partial summation) but terms up to the infinite order are taken into
account (renormalisation). As a result of this, we obtain a closed system of equations
with respect toQαβ (k; t, t ′) and Gαβ(k; t, t ′),

LQαβ (k; t, t ′)

LGαβ (k; t, t ′)

⎫
⎬

⎭ = Functional of Qαβ and Gαβ . (230)

This procedure, in general, is called partial infinite summation or renormalisation.
This method is very powerful in dealing with strong nonlinear interactions, which
cannot be truncated in the expansion series. The propagator renormalised represen-
tation of Qab(k; t, t ′) and Gab(k; t, t ′) are symbolically expressed as in Figs. 23
and 24, respectively.

The basic idea of the renormalisation can be understood by considering a simple
infinite series,

f (x) = 1+ x + x2 + x3 + · · · , (231)
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This method is very powerful in dealing with strong nonlinear interactions, which
cannot be truncated in the expansion series. The propagator renormalised represen-
tation of Qab(k; t, t ′) and Gab(k; t, t ′) are symbolically expressed as in Figs. 23
and 24, respectively.

The basic idea of the renormalisation can be understood by considering a simple
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Renormalisation a part of the infinite series with respect to the propagators is 
summed up to the infinite orders

No good



Inhomogeneity, 
anisotropy, and non-

equilibrium properties



The difference between the stupidity and genius is  
that the genius has its limit. (Albert Einstein)

RHK with Akira Yoshizawa at IIS in 1996

“Crazy”



Multiple-Scale Direct-Interaction Approximation

Velocity-fluctuation equation

Fast and slow variables

Slow variables X and T change only when x and t change much.

Mirror-symmetric case: Yoshizawa, Phys. Fluids 27, 1377 (1984) 
Non-mirror-symmetric case: Yokoi & Yoshizawa, Phys. Fluids A 5, 464 (1993)

Inhomogeneities, anisotropies, 
non-equilibrium properties
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Figure 6.1. Coexistence of slow and fast variations. 

ical complexity arising from the use of the centroid coordinate. 
A method for analytically treating the state subject to two different 

temporal and spatial variations is the full use of their separation (here we 
should note that the separation does not mean the clear-cut one such as 
the separation between molecular and fluid motions). The method may be 
divided roughly into two categories. In one category, the effects of the mean 
field on the fluctuating one are incorporated in a perturbational manner. 
Afterwards, the feedback effects on the mean field are taken into account 
self-consistently through the mean-field equation with the former effects in-
cluded. In another category, nonlinear effects of fast variations are directly 
incorporated into the slow-motion components in a form of renormalized 
coefficients. The former approach is a two-scale direct-interaction approx-
imation (TSDIA) method (Yoshizawa 1984a), which will be detailed in 
this chapter. The latter corresponds to the renormalization group (RNG) 
method, which was highly developed in the study of solid-state physics and 
was applied by Yakhot and Orszag (1986) to turbulence analysis. This RNG 
method has been extended to shear turbulence by Rubinstein and Barton 
(1990, 1991) to derive the nonlinear models for the Reynolds stress and 
the turbulent scalar flux. Some problems in the application of the RNG 
method to turbulence have been scrutinized in several works, as is noted in 
Sec. 3.5.1 (see also Kraichnan 1987). 

A different theoretical approach to shear turbulence was presented by 
Weinstock (1981, 1982) who focused attention on the pressure-strain corre-
lation,IIij [Eq. (2.107)J. This quantity plays a central role of describing the 
anisotropic property of turbulent intensities, as is discussed in the second-
order modeling of Chapter 4. In the work, the quasi-normal approximation 
method, which is referred to in Sec. 3.5.5.B, was applied, and the mathe-
matical structure of IIij was examined in the wavenumber space. One of 
the interesting findings is the extension of Rotta's model (4.165) to an 
anisotropic form. 



Projection operators

Basic-field (lowest-order field) equation

Multiple-Scale DIA calculations
Scale parameter expansion

Green’s function



1st-order field

Formal solution in terms of Green’s function
Inhomogeneities, anisotropies, 
and non-equilibrium properties



Statistical assumptions on the lowest-order (basic) fields
Basic fields: homogeneous isotropic

D↵�(k) = �↵� � k↵k�

k2
, ⇧↵�(k) =

k↵k�

k2
<latexit sha1_base64="OQF3UYsfZEThhzjIgS2HTemUcEg="></latexit><latexit sha1_base64="LAPJsRoTYjnV7F0kotMKpGsfRls="></latexit><latexit sha1_base64="LAPJsRoTYjnV7F0kotMKpGsfRls="></latexit><latexit sha1_base64="GR7h3D0SNKMoCUfhQ4jpBbQg0Lw="></latexit>

with solenoidal and dilatational projection operators

u'(x) u'(x+r)

v'(x) v'(x+r) v'(x)

w'(x+r)

r rr

Longitudinal Transverse Cross

Longitudinal Transverse Cross
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eRij(r; t, t0) = A(r; t, t0)�ij +B(r; t, t0)rirj + C(r; t, t0)✏ij`r`

Scalar (isotropic) quantity Should be invariant under rotation of r, a, b

Equivalently,



Calculation of turbulent correlation by DIA



Mean-field equations in compressible MHD
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Yokoi, N., J. Plasma Phys. 84, 735840501 & 775840603 (2018a,b)



eddy viscosity

cross helicity

inhomogeneous helicity

D: deviatoric part

: absolute mean vorticity (mean vorticity + rotation)
mean velocity strain mean magnetic-field strain

Reynolds and turbulent Maxwell stress

Some main results of theoretical analysis

Turbulent electromotive force
Turb. Mag. Diffusivity Alpha effect

Cross-helicity effect Magnetic pumping

Compressibility

h⇢0u0i = �⇢r⇢� QrQ� D
DU

DT
� BB
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Turbulent mass flux

Turbulent internal-energy flux
+ Non-equilibrium effects



Illustrative examples



Differential Rotation
Helioseismology shows the internal structure of the Sun.

• Meridional flow 
poleward at surface

• Interior structure not settled• Solid body rotation in the radiative interior
• Thin matching zone of shear known 

as the tachocline at the base of the 
solar convection zone (just in the 
stable region)

• Surface differential rotation is 
maintained throughout the 
convection zone

• As stars spin faster they tend 
to have slower meridional 
flows (from models)

(Hanasoge 2022)

Azimuthal velocity Meridional circulation

55



Convection conundrum

- The convective velocity amplitude at large horizontal 
scales observed by helioseismic investigations is 
much smaller than the one predicted by global 
convection simulations

The current numerical simulations do not capture 
some basic characteristics of the solar convection

- The differential rotation profile obtained by the global numerical 
simulations shows the anti-prograde profile, if the solar values of 
luminosity (energy transfer rate) and rotation rate are adopted in 
the simulation. 

- Also, if the large-scale convection motions are actually small, 
how such weak flows can transfer the solar luminosity and 
mean differential rotation rate observed in the 
helioseismology?

(Schumacher & Sreenivasan 2020)
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Figure 5
Upper bounds on kinetic energy Eφ of longitudinal velocities vφ versus spherical harmonic degree, ℓ. We
define Eφ at radius r such that ⟨v2

φ⟩/2 =
∑

ℓ≥0 Eφ (ℓ)/r , where the expectation value is approximated by a
horizontal average. The gray region shows the helioseismology bound, based on T = 96-h samples of
Helioseismic and Magnetic Imager (HMI) observations (Hanasoge et al. 2012b). These constraints are
several orders of magnitude smaller than numerical simulations of global convection [Anelastic Spherical
Harmonic simulation (ASH; light blue line) (Miesch et al. 2009)], suggesting that our current modeling of
large-scale convection in the Sun is incomplete. The various curves denote convective energy spectra at
different depths: Seismology corresponds to r/R⊙ = 0.96, ASH to r/R⊙ = 0.97, and Stagger simulations to
r/R⊙ = 0.98. The horizontal purple line is a theoretical lower bound based on global dynamics arguments
(Miesch et al. 2012), assuming mode equipartition over ℓ < 750. The red curves are surface spectra based on
HMI observations of granulation and supergranulation (SG) tracking. The SG tracking spectrum is based on
data from Hathaway et al. (2013), courtesy of David Hathaway. Using a new implementation of ring-
diagram helioseismology (with no noise subtraction), Greer et al. (2015) found a much higher upper limit for
horizontal flow velocities. Figure adapted with permission from Gizon & Birch (2012).

A related challenge lies in explaining the convective power falloff at low spherical harmonic
degrees. Using phenomenological models, Lord et al. (2014) attempted to derive a set of conditions
that would result in this falloff. In line with growing evidence supporting weak convective motions
on large scales, Lord et al. (2014, p. 10) concluded that

reducing the convective transport role of large-scale modes (by employing an artificial energy flux at all
depths below 10 Mm which reduces the deep rms velocities by a factor of ∼2.5) can significantly improve
the match between the coherent structure tracking spectra of the simulations and observations. These
separate lines of evidence all suggest that the Sun transports energy through the convection zone while
maintaining very low amplitude large-scale motions. Something is missing from our current theoretical
understanding of solar convection below ∼10 Mm.

202 Hanasoge · Gizon · Sreenivasan

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
6.

48
:1

91
-2

17
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 1

53
.1

56
.1

8.
12

9 
on

 0
1/

20
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

(Hanasoge, Gizon & 
Sreenivasan 2016)



Non-local heat transport via entropy rain (e.g., Brandenburg 2016, Anders et al 
2019)

Amplitude and length-scale of convection could be smaller than we think, leading 
to a smaller Ro = U/ 2ΩL (Vasil et al 2022, but Käpylä 2023)

Maxwell Stresses from small-scale dynamo acts to counteract Reynolds 
Stresses that lead to anti-solar rotation profile (e.g., Hotta et al 2022)

Approaches to the conundrum

-> Non-equilibrium effect associated with plumes and 
thermals (Yokoi, Masada & Takiwaki 2022)

-> Inhomogeneous helicity effect coupled with rotation (Yokoi 
& Yoshizawa 1993, Yokoi & Brandenburg 2016)

-> Cross-helicity effect in angular momentum transport (Yokoi 2023)

Coherent motion effect

Rotation effect

Magnetic-field effect



Angular-momentum transport by 
inhomogeneous kinetic helicity

Pouquet, A. & Yokoi, N. “Helical fluid and (Hall)-MHD turbulence: a brief review,” Phil. 
Trans. Roy. Soc. A 380, 20210081-1-18 (2022)
https://doi.org/10.1098/rsta.2021.0087

Yokoi, N. “Transports in helical fluid turbulence,” pp.25-50, 
in Kuzanyan, Yokoi, Georgoulis & Stepanov (eds.) AGU Book: Helicities in Geophysics, 
Astrophysics and Beyond (Wiley, 2023)
https://doi.org/10.1002/9781119841715

Yokoi, N. & Brandenburg, A. “Global flow generation by inhomogeneous helicity,” Phys. 
Rev. E. 93, 033125-1-14 (2016)
https://doi.org/10.1103/PhysRevE.93.033125

Yokoi, N. & Yoshizawa, A. “Statistical analysis of the effects of helicity in inhomogeneous 
turbulence,” Phys. Fluids A 5, 464-477 (1993) 
https://doi.org/10.1063/1.858869

https://doi.org/10.1098/rsta.2021.0087
https://doi.org/10.1002/9781119841715
https://doi.org/10.1103/PhysRevE.93.033125


Turbulent swirling pipe flow Uz

Uz

Uθ

Uθ

r

r

z

θ

θ

Axially rotating turbulent pipe flow

(Imao et al. 1996)

Swirling flow in a circular pipe

These flow properties cannot be reproduced 
by the standard eddy-viscosity representation at all.
Too much dissipative.



Calculation of the Reynolds stress

where

Eddy viscosity

Helicity-related  
coefficient

helicity inhomogeneity is essential

mixing length

(Yokoi & Yoshizawa, PoF A5, 464, 1993)
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DNS set-up

Set-up of the turbulence and rotation ωF (left), the schematic spatial profile of the 
turbulent helicity H (=〈uʹ・ωʹ〉) (center) and its derivative dH/dz (right).

7

We consider three values for the scale separation ratio,
kf/k1 = 5, 15, and 30 and determine ⌘/⌫T using Eq. (41)
by measuring Uy and H. We express time in terms of

⌧ = 1/urmskf , (42)

which is also used as an estimate of the correlation time
of the turbulence. Kinetic energy spectra, EK(k, t), are
normalized such that

R
EK(k, t) dk = hu2i/2.

All simulations are performed with the Pencil Code1,
which uses a high-order finite di↵erence method for solv-
ing the compressible hydrodynamic equations. We use a
small Mach number so that the results are essentially the
same as for a purely incompressible flow.

B. Numerical results

The results are summarized in Table I. All simulations
show that the sign of ⌘ is positive. We find that ⌘/⌫T⌧2

is in the range of O(10�2) to O(10�1), depending on
Reynolds and Coriolis numbers (Co = !F⌧) as well as
scale separation. Run A shows clear generation of a mean
flow as seen from Eq. (41). This equation is also used to
determine ⌘/(⌫T⌧2) as the correlation coe�cient in Uy

vs. 2!y

FH; see the last column of Table I.

1. Mean flows

As we see from Eq. (41), the large-scale flow is expected
to be generated in the direction of the rotation vector !F

(or the large-scale vorticity ⌦) mediated by the helicity
e↵ect. The shape of the mean axial velocity component
Uy is shown in Fig. 3. A clear flow pattern with positive
and negative velocity is seen, which corresponds to the
velocity distribution given by Eq. (41).

In Fig. 4, we show the temporal evolution of the tur-
bulent helicity hu0 ·!0i and the mean-flow helicity U ·!F.
In this simulation, the turbulent helicity hu0 · !0i is sus-
tained by the external forcing from the beginning of the

TABLE I: Summary of DNS results.

Run kf/k1 Re Co ⌘/(⌫T⌧
2)

A 15 60 0.74 0.22
B1 5 150 2.6 0.27
B2 5 460 1.7 0.27
B3 5 980 1.6 0.51
C1 30 18 0.63 0.50
C2 30 80 0.55 0.03
C3 30 100 0.46 0.08

1
http://github.com/pencil-code/

FIG. 3: Axial flow component U
y on the periphery of the

domain for Run B2 with kf/k1 = 5 and Re = 460.

simulation. Its spatial distribution reflects the forcing,
which is proportional to sin k1z so that H > 0 for z > 0
and H < 0 for z < 0. On the other hand, the mean-flow
helicity U ·!F is generated as the mean axial flow Uy is
induced by the inhomogeneous turbulent helicity e↵ect.
The magnitude of U · !F reaches an equilibrium value
around t/⌧ = 2000. Its spatial distribution is consistent
with the direction of the induced axial flow Uy.

FIG. 4: Turbulent helicity hu0 ·!0i (top) and mean-flow helic-
ity U ·!F (bottom) for Run C1 with kf/k1 = 30 and Re = 18.

2. Reynolds stress tensor

The y-z component of the Reynolds stress, hu0yu0zi in
the early stage of development (averaged over time from
t/⌧ = 40 to 200), is shown in the top panel of Fig. 5.
The averaged magnitude of the Reynolds stress is drawn
with the dot dashed line, which suggests the peak magni-
tude normalized by the turbulent intensity hu02i is about

Rotation

Inhomogeneous 
turbulent helicity

Summary of DNS results

x

yz

+z0

–z0

ωF
0

+z0

–z0

0

z

H

z

dH
dz

H(z) = H0 sin(⇡z/z0)

(Yokoi & Brandenburg, PRE, 2016)



Axial flow component Uy on 
the periphery of the domain

Turbulent helicity 〈uʹ・ωʹ〉 (top) and 
mean-flow helicity U・2ωF (bottom)

Global flow generation



Reynolds stress 〈uʹyuʹz〉 (top), 
helicity-effect term (∇H)z 2ωFy (middle), 
and their correlation (bottom).

Mean axial velocity Uy (top), turbulent 
helicity multiplied by rotation 2ωFH 
(middle), and their correlation (bottom).

Early stage Developed stage

Reynolds stress
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Mean flow induction consuming  
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Angular momentum around the rotation axis

Vector flux of angular momentum

Helicity effect

Miesch (2005) Liv. Rev. Sol. Phys. 2005-1

Angular-momentum transport  
in the solar convection zone



Duarte, et al, (2016) MNRAS 456, 1708

Helicity effect in the stellar convection zone
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Validation of the helicity SGS 
model by DNSs

Yokoi, Mininni, Pouquet, Rosenberg & Marino, Phys. Fluids (to be submitted)



Problem of Constant Adjustment

Smagorinsky constant    needs to be adjusted such as
Isotropic flow
Mixing-layer flow
Channel flow

• Dynamic procedure to determine the coefficient CS

• Alternatives to the generic form

• Evolution equations of the SGS quantities

To alleviate

Smagorinsky model



Fluctuating vorticity 
(Robinson, Kline & Spalart 1988)

Smagorinsky 
constant CS

Isotropic flow

Mixing-layer flow

Channel flow

Vortical 
structures

weak

intermediate

strong

Coherent vortical structures (streetwise vorticity) 
may be related to the less dissipative nature

Dissipative 
nature

more
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Implication to SGS modelling
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HIT 
with a Gaussian filter 
at kc=14

Smagorinsky model Helicity SGS model

SGS stress

SGS helicity correction improves the SGS stress evaluation
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Non-equilibrium effect in 
convective transport

Yokoi, N., Masada, Y. & Takiwaki, T. “Modelling stellar convective transport 
with plumes: I. Non-equilibrium turbulence effect in double-averaging 
formulation,” Mon. Not. Roy. Astron. Soc. 516, 2718–2735 (2022) 
https://doi.org/10.1093/mnras/stac1181 

Yokoi, N. “Non-Equilibrium Turbulent Transport in Convective Plumes 
Obtained from Closure Theory,” Atmosphere 14, 1013-1-22 (2023) 
https://doi.org/10.3390/atmos14061013

https://doi.org/10.1093/mnras/stac1181
https://doi.org/10.3390/atmos14061013


Non-equilibrium properties

Deviation from the local equilibrium

Non-equilibrium property due to the time variation of fluctuations 
along the large- or meso-scale flows

Non-equilibrium open system
Non-equilibrium state is sustained by 
the energy flux through the boundaries 
with mass and flow

Kolmogorov homogeneous isotropic turbulence:  
Local equilibrium between the energy production/injection 
and dissipation

Energy fluxFlows

Upper boundary

Lower boundary

Irreversibility Asymmetry with respect to the exchange of time variables



Plumes in stellar 
convection



Surface cooling diving plumes
Spruit 1997

Entropy rain
Brandenburg 2016

Two layer polytropic gas configuration
Cossette & Rast 2016

Rieutord & Zhan 1995

Entrainment with plumes
Turner 1973

Linden 2000

Entrainment model in the supernovae explosion

Rast 1998

Murphy & Meakin 2011

Plumes and turbulent transport

Importance of the non-equilibrium effects

Beyond hydrostatic pressure and entrainment assumption
Long-lasting effect of diving plumes

Dominant role of the cooling driven plumes

Entrainment assumption and scaling

More effective mixing due to radiative cooling 

Turbulence modelling implementing plume effects

Usefulness of entrainment model
Anett + 2015 Chaotic model with roll of Lorentz
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3. RESULTS

First, we compare two simulations that share approximately
the same total kinetic energies and convective fluxes in the bulk
of the convection zone. In CaseA we specify a weakly
superadiabatic ambient state across the full depth of the
convection zone, while in Case B the superadiabatic ambient
state is confined to the upper 3.5 Mm of the domain spanning 5
density scale-heights (hereafter the cooling layer). The cooling
layer is in some ways analogous to the solar photosphere,
where the spatial scale of the granular downflows is set by the
local density scale-height. The typical spatial scale of the low-
entropy parcels generated in the cooling layer of CaseB
similarly reflects the turbulent energy injection scale ~ rL H4
( ~rH 0.36 2.6– Mm) there (Rincon 2007; Lord et al. 2014).
Note that the cooling layer is distinct from the superadiabatic
region that we will see develops below it as a result of the flow
itself and determines the spectrum of larger-scale motions.

The flow in CaseA is dominated by larger-scale motions
than in CaseB (Figure 1) and positive entropy perturbations
that, although weaker, tend to be coherent over the full depth of
the convection zone. The mean thermodynamic stratification
(Figure 1(c)) in Case A is characterized by a weakly
superadiabatic mean state ( áQñ <d dr 0) throughout. The
mean stratification in CaseB, on the other hand, is very close
to adiabatic throughout the bulk, but strongly superadiabatic
immediately below the cooling layer. The turbulent energy
injection scale in that region is comparable to the size of
supergranules (region SG in Figure 1(c)), and the buoyancy
forces therein drive upflows on that scale (red and yellow areas
in Figure 1(b)). In Case A, on the other hand, the convectively
unstable mean stratification through the bulk of the convection
zone (“GC” region in Figure 1(c)) additionally drives giant-cell
scale motions. We note that these simulations are not strictly in
equilibrium. Both the superadiabatic stratification in the upper
layers and the subadiabatic region at the base of the convection

zone are evolving, but this occurs on timescales much longer
than the convective turnover time so the consequent spectra of
interest (Figure 2) are nearly stationary.

Figure 1. Vertical cross-sections of the instantaneous deviations Q º Q - áQñ
~

from the horizontal mean of the potential temperature áQñ taken from case A (panel
(a)) and B (panel (b)) at t=10 solar days. Case A is characterized by a weakly superadiabatic ambient profile (ms=1.4999998) across the convection zone
(  r r rt i), whereas Case B uses a strictly adiabatic profile in the region (   º r r r r R, 0.96s i s ) and a superadiabatic profile (ms=1.4994) inside a 3.5 Mm
deep region below the surface (  r r rt s). The horizontal dashed line denotes the location of the interface at =r ri. Low-entropy fluid parcels produced in the driven
region pass through the convection zone and impact the stable layer below, exciting gravity waves there. Panel (c) shows profiles of áQ ñ - Qr ra i( ) ( ) for each case in
the region  r r rs i (solid lines). As in Case B, Cases C and D employ strictly adiabatic ambient profiles below = r R0.96s and superadiabatic profiles
characterized by ms=1.49985 and ms=1.4985 above, respectively. Shaded areas labeled “GC” and “SG” correspond to depth ranges over which

< <rH100 Mm 4 300 Mm and < <rH20 Mm 4 50 Mm, respectively. The change in áQñ near the surface in Cases B–D is well reproduced by cold fluid
parcels moving down adiabatically from =r rs (dashed lines). The subadiabatic stratification at the base of the convection zone is caused by the accumulation of low-
entropy fluid there, taking place on a timescale áQ¢ñ áQ¢ñ -d dt 201( ) solar days.

Figure 2. Horizontal cross-sections of the instantaneous vertical velocity ur
taken at 5 Mm depth corresponding to Cases A (panel (a)) and B (panel (b)) at
t=10 solar days. The inserted plot in each panel shows the magnified view of
a 100 Mm2 area. As in other experiments of compressible convection, ur is
characterized by broad upflows surrounded by a network of narrow downflow
lanes (see Nordlund et al. 2009; Miesch & Toomre 2009 and references
therein). Panel (c): instantaneous horizontal velocity power spectra taken at
5 Mm depth for each case. Here, p lºk 2h , with λ the horizontal wavelength.
Shaded areas labeled “GC” and “SG” correspond, respectively, to spectral
ranges where l< <100 Mm 300 Mm (hereafter giant cells) and

l< <20 Mm 50 Mm (hereafter supergranular scales).
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the same total kinetic energies and convective fluxes in the bulk
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superadiabatic ambient state across the full depth of the
convection zone, while in Case B the superadiabatic ambient
state is confined to the upper 3.5 Mm of the domain spanning 5
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layers and the subadiabatic region at the base of the convection
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Gradient diffusion model with 
mixing-length theory (MLT)

Turbulent transport of the surface 
cooling diving plume (non-local 
transport) cannot be properly 
described by the gradient-diffusion 
model with MLT.

Spatial distributions of turbulent 
energy flux
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Non-equilibrium effects



1st-order field

Formal solution 
in terms of the 
response 
function G

From the Multiple-scale DIA calculations



Non-equilibrium effectEquilibrium effect

Equilibrium length scale

Turbulent energy

Dissipation rateLength scale (energy containing scale)

Non-equilibrium Effects

Solve this by iterations with respect to ℓc



Relevance of the non-equilibrium effect
in homogeneous shear turbulence

StSt0

K

DNS

Standard K–ε
model

Nonequilibrium
model

Onset of 
model simulations

Time

Turbulent energy

K–𝜀 model 
in homogeneous shear turbulence 

Homogeneous shear flow
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Standard K–𝜀 model with
Equilibrium eddy viscosity

Non-equilibrium eddy viscosity

with

(Yoshizawa & Nisizima 1993, Phys. Fluids A5, 3302)
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(right-hand subplot). Starting at a value of 1.1, the ratio M∕Mo gradually decreases from 
the x = 27D end and levels off at x = 32D . Between 30 < x∕D < 37 , the jet momentum 
flux is conserved to within 6%. This level of conservation is consistent with those reported 
in previous experimental studies: 4% in Darisse15, ±3% in WL02, ±6% in [13] and ±5% 
in [19]. The poorer conservation of Mo for x < 30D was due to astigmatism (distortions of 
particle images) found in a localized region (corresponding to the +r-axis of U in Fig. 4) 
in the images taken by the right camera in Fig.  2. The astigmatism caused asymmetry 

26 28 30 32 34 36 38
x/D

0.01

0.015

0.02

0.025

0.03

0.035

(u
2 /
√

is
o)

c
∼

R
e λ

Fig. 8  Streamwise variation of (u2∕
√
𝜖iso)c measured at jet centerline. (u2∕

√
𝜖)c is proportional to the Tay-

lor Reynolds number Re𝜆 =

√

u2𝜆∕𝜈 where 𝜆 is the Taylor microscale. The turbulent dissipation rate at 
jet centerline is estimated by the isotropic relation 𝜖iso = 15𝜈(𝜕u∕𝜕x)2 . The black solid line represents the 
average of (u2∕

√
𝜖iso)c over the range 32 < x∕D < 37 , and the dotted lines represent ±5% from this average

26 28 30 32 34 36 38
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

26 28 30 32 34 36 38
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fig. 9  Conservation of jet momentum flux - M = M +Mt where M is the mean momentum flux and Mt is 
the turbulent momentum flux. Mo =

𝜋

4
D2U2

j
 is the source kinematic momentum flux

(Lai & Socolofsky 2019, Environ. Fluid Mech. 19, 349)

21

x/D
√
⟨(u′x)2⟩/Uc

√
⟨(u′y)2⟩/Uc

√
⟨(u′z )2⟩/Uc K/U2

c ⟨(u′x)2⟩/√εiso
31 0.26 0.20 0.19 0.1437 3.25 × 10−2

37 0.26 0.20 0.19 0.1437 2.65 × 10−2

(-20%)

Table 1: Streamwise variation of normalised turbulent intensities, turbulent energy, and
turbulent axial velocity fluctuation normalised by the square root of the dissipation rate at
the jet centreline. x/D: jet streamwise length, D: jet nozzle exit diameter (D = 11 mm),

Uc: centreline jet velocity (Uc = 50 mm s−1). Data are taken from figures 7 and 8 of
Lai & Socolofsky (2019a).

and since the energy dissipation rate ε is well represented by that of the isotropic turbulence,749
εiso, the evolution of squared axial velocity fluctuation, ⟨(u′x)2⟩/√εiso, provides a reasonable750
surrogate for the basic behaviour of K2/ε:751

K2

ε
∝

[ ⟨(u′x)2⟩√
εiso

]2
. (6.2)752

753
The decrease of ⟨(u′x)2⟩/√εiso in the downstream direction indicates that the sign of the754

non-equilibrium effect term is negative as755

D
Dt

K2

ε
< 0 (in turbulent round jets). (6.3)756

It follows from (6.1) that the turbulent viscosity is enhanced by the non-equilibrium effect as757

νNE = νE

(
1 − CN

1
K

D
Dt

K2

ε

)
> νE. (6.4)758

.759
In order to evaluate the non-equilibrium effect, we introduce the non-equilibrium correction760

factor Λ by761

Λ = CN
1
K

D
Dt

K2

ε
, (6.5)762

where CN is the model constant estimated as the order of unity (CN = 0.8) through763
applications to the homogeneous-shear flow turbulence (Yoshizawa, Fujiwara, Hamba et al.764
2003). This factor is approximated in terms of the Lagrangian derivative as765

Λ ≃ CN
1
K
(U·∇)K2

ε
. (6.6)766

Using data of Lai & Socolofsky (2019a), Λ is estimated as767

Λ ≃ CN

(
Uc√

⟨(u′x)2⟩

)2
1

Uc

∆{[⟨(u′x)2⟩/
√
⟨εiso⟩]2}

D∆(x/D) ≃ 1.7 (6.7)768

with CN = 1 (Table 1). Here, ∆{[⟨(ux)2⟩/
√
⟨εiso⟩]2} and ∆(x/D) are the increments of769

[⟨(ux)2⟩/
√
⟨εiso⟩]2 and x/D along the jet streamwise direction.770

In Lai & Socolofsky (2019a), budgets of the turbulent-energy and dissipation-rate equa-771
tions were also investigated. Using the balance in the budgets, the coefficients of each term772
of the K − ε model were examined. They suggested the befitting directions for the change of773
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re-evaluated using te present data in Sect.  3.5. A validation using a computational fluid 
dynamics (CFD) simulation with the experimentally determined model coefficients is 
given in Sect. 3.6 and a discussion of the chosen set of coefficients is given in Sect. 4. This 
paper ends with a summary of the main conclusions in Sect. 5.

2  Experiments

The experiments have been carried out in the Fluid Dynamics Laboratory of the Zachry 
Department of Civil Engineering at Texas A&M University. Figure  2 shows the layout 
of the present experiment. A jet nozzle with an exit diameter D = 11mm is vertically 
mounted at the center of the bottom face of a 1m × 1m × 1m water tank. The nozzle con-
sists of a 265 mm-long straight section and a 25.4 mm-long linear contraction section. The 
straight section has an inner diameter of 25.4 mm and the contraction section has a con-
verging angle of 15.8◦ that allows a smooth transition from the larger pipe diameter to the 
smaller nozzle exit diameter D; the exit velocity profile has been measured by PIV to be 
top-hat [14]. The nozzle exit is 28.7D (including pipe fittings) above the tank floor.

The tank is filled with tap water to a depth of 0.98m (= 89D) . An approximately 2 mm-
thick laser sheet is formed by a combination of a continuous-wave Nd:YAG (532 nm) laser 
and associated optics (mirrors plus a cylindrical lens), and it is directed from one side of 
the tank to illuminate the jet centerplane. A stereoscopic particle image velocimetry (SPIV) 
system is set up to measure the two-dimensional-three-component (2D3C) velocity fields 
at the jet centerplane (Socolofsky and Lai [27]). Two CMOS cameras (Phantom Miro 340, 
Vision Research) are arranged symmetrically about the center of a 125mm × 125mm field-
of-view (FOV). To reduce image distortions due to changes in refractive index of light 
along light paths, two water prisms, each measuring 0.6m long, are installed on the imag-
ing side wall of the tank [20]. On each of the cameras, a Scheimpflug adapter is used to 
bring particle images across the FOV into focus. Each camera is equipped with a Nikkor 
50 mm marco lens and a circular polarizing filter to improve image contrast. The imaging 

Fig. 2  (Left) Definition sketch of present stereoscopic particle image velocimetry experiment on a turbulent 
round water jet. (Right) The right-hand coordinate system (x, y, z) adopted for the present jet experiment; 
the symbols r and y are used interchangeably in this paper

Round jet
Non-equilibrium effects in experiment I

Transport enhancement

Eddy-viscosity-related constant



Double averaging 
approach



Double-averaging procedure
Double-filtering approach

e.g., Dynamic Smagorinsky model  
(Germano, 1991)
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Rules of averaging

Dispersion/Coherent fluctuation

Coherent and incoherent fluctuations



Coherent/dispersion
fluctuation

Incoherent/random
fluctuation

Turbulent energy equations

Dispersion part of the  
incoherent/random fluctuation correlation



Modelling of transport 
with plumes
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Cooling

Plume
(Coherent fluctuation)

Random noise
(Incoherent fluctuation) PK"

Scenario: Interaction between   
        coherent and incoherent fluctuations

Source of incoherent 
fluctuation energy

Sink of coherent 
fluctuation energy

In the presence of the coherent velocity shear, 
energy transfer between the coherent and 
incoherent fluctuation components occurs 
mediated by the dispersion part of the random 
fluctuation velocity correlation. Due to the non-equilibrium effect, 

timescale of coherent fluctuations is 
altered, leading to an enhancement of 
energy transfer to random 
fluctuations if 𝛬 < 0.

Enhancement of energy transfer to random fluctuation



Turbulence modeling 
in the time–space double averaging

Turbulent internal-energy flux

Turbulent diffusivity with non-equilibrium effect

Non-equilibrium property  
along the plume motion

Coherent timescale Incoherent timescale



Application to stellar 
convection



Set-up of the convection simulation

Hydrostatic balance

Determining the spatial distribution 
of the density and pressure

Convection instability condition

where

For a polytropic gas 

Unstable
Marginally stable

Instability condition

In the adiabatic case

Polytropic gas
Eq. of State
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Two-layer polytropic gas convection

Control parameter:  
specific internal energy at the surface (zS)
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Non-dimensional parameters with

(Cossette & Rast 2016, ApJL, 829, L17)

throughout the 
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near 
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Non-equilibrium property 
along the plume motion

Bottom Surface



by DNS

by Non-equilibrium model

Turbulent energy flux

A similar result is obtained for the turbulent mass flux

The non-equilibrium effect in the time–space double averaging 
framework is a promising model approach to the stellar convection 
with plume.
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Summary of non-equilibrium effects 
on convective plumes

• Transport due to plume motion is incorporated into turbulence model 
through the non-equilibrium effect through the time variation of 
fluctuations along the plume motion

• Turbulence modelling in the time–space double averaging framework

• Turbulent convective transport of surface cooling diving plumes (non-
local transport) is properly described by the non-equilibrium model

Wish list

Summary There exist two convection models possibly describing the solar convection: 
①Cooling driven model ②S-gradient driven model

10−7
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ϵ v
z
(k
)

k/kL

S-gradient-driven

Cooling-driven

From the spectral point of view, the cooling 

driven model seems to be compatible with 

the observation (no giant cell).  

cooling-driven model has non-gaussian 

properties and characterized by plumes.

● GD model cannot describe the turbulent energy transport in the cooling

driven convection. A correction term due to the coherent fluctuation can 

be included to reproduce it. TSDA method is useful to get insights. 

●

If the solar conv. is primarily cooling-driven, we may have to rebuild the stellar physics in a profound manner. (Masada, Private communication)

Physics of plume formation

What determines the non-equilibrium properties of turbulence

Statistical properties (probability distributions)

Dynamical properties (length, aspect ratio, shape)

Entropy production rate etc.



Non-equilibrium effect 
in dynamos

Cross-interaction responses

Yokoi, N. “Unappreciated cross-helicity effects in plasma physics: Anti-diffusion effects 
in dynamo and momentum transport,” Rev. Mod. Plasma Phys. 7, 33-1-98 (2023)  
https://doi.org/10.1007/s41614-023-00133-4 

Mizerski, K., Yokoi, N. & Brandenburg, A. “Cross-helicity effect on α-type dynamo in 
non-equilibrium turbulence,” J. Plasma Phys. 89, 905890412 (2023) 
https://doi.org/10.1017/S0022377823000545

https://doi.org/10.1007/s41614-023-00133-4
https://doi.org/10.1017/S0022377823000545


Global flow generation by cross 
helicity

eddy viscosity

cross helicity

inhomogeneous helicity

D: deviatoric part

: absolute mean vorticity (mean vorticity + rotation)

cf.

: mean velocity strain
: mean magnetic-field strain

Turbulent cross helicity coupled with mean 
magnetic-field strain may contribute to 
transport suppression and/or global flow 
generation against the eddy-viscosity effect

Reynolds and turbulent Maxwell stress
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Result



Velocity fluctuation 
induced by fluctuating Lorentz force

Associated vorticity

Physical interpretation of 
large-scale flow generation by cross helicity

u′

b′

δu′- = τJ J-× b′
δu′+ = τJ J+× b′

δω′ = ∇ × δu′

〈u′ ⋅ b′〉 > 0
δU = τ 〈u′ × δω′〉

 ∝  〈u′ ⋅ b′〉 ∇ × J

J+J-

Non-trivial mean electric-current distribution 
(Inhomogeneous J) is required

in the direction of



Theoretical formulation (e.g., incompressible MHD)

Multiple-scale analysis

Two-scale equations in configuration space

inhomogeneities, 
anisotropies, 
non-equilibrium properties



Projection operators

Basic-field (lowest-order field) equations

Scale parameter expansion



equation

equation
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Green’s function equations

Response functions in MHD
Cross-interaction responses in incompressible MHD

cf. Hydrodynamic case



solution



Turbulent electromotive force (EMF)

Cross interaction mediated by Gub and Gbu
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effect



Dynamo due to the cross-interaction responses
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Cross-interaction 𝛼X

Helical functions satisfy

Symmetric and anti-symmetric parts of Hub  
with respect to the exchange of time variables

Non-equilibrium effect
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Simple model

where

Independent of k
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The response functions Gub must be an odd function of b00

pure scalar Gub skew

Dynamic quantity that is odd in b00 and skew Cross helicity

where Normalised cross helicity



Non-equilibrium alpha

Non-equilibrium helicityCross helicity

Co-existence of kinetic and cross helicities
10 K. A. Mizerski, N. Yokoi and A. Brandenburg

Figure 1. Results for Run A of numerical simulations of MHD turbulence in a periodic box
with the use of the Pencil Code. The upper panel shows the time evolution of the normalized
cross-helicity, hu0 · b0i/

p
hu02ihb02i (red) and the kinetic helicity hu0 · w0i/

p
hu02ihw02i (blue);

the time averages are marked with the white continuous lines and the green line depicts the
current helicity hb0 · j0i/

p
hu02ihw02i. The estimates of the coefficients ↵neq (4.5) and ↵S (4.6) as

functions of time (normalized with ↵0 = urms/3) are provided in the bottom panel in red and
orange respectively; the continuous white line marks the time averaged value of ↵S/↵0 and the
dashed white line the time average of ↵neq/↵0.

effect in the form

↵neq ⇡ �
1

3

hu0
· b0

ip
hu02ihb02i

Z ⌧

�1
d⌧1 [hu

0 (x, ⌧) · j0 (x, ⌧1)i � hu0 (x, ⌧1) · j
0 (x, ⌧)i] , (4.5)

which can be compared with the following standard estimate of the ↵-effect, associated
with the presence of the kinetic and current helicities

↵S ⇡ �
1

3
⌧t (hu

0
·w0

i � hb0
· j0i) , (4.6)

where ⌧t = 1/urmskf is the turnover time of most energetic turbulent eddies, with
urms =

p
hu02i and kf = 30 k1 denoting the forcing the wavenumber (k1 = 2⇡/L is

the wavenumber of the box of length L).
Although in the numerically studied cases the statistical non-stationarity of turbulence

is rather weak and the estimate of the ↵neq coefficient is always at least an order of
magnitude weaker than ↵S, the former is clearly different from zero and its relative
importance seems to correlate with the magnitude of the cross-helicity. The relative

Non-equilibrium ↵-effect from cross-helicity 11

g
c2sk1

vA0
cs

hu0·b0ip
hu02ihb02i

hu0·w0ip
hu02ihw02i

hb0·j0ip
hu02ihw02i

↵neq

↵0

↵S
↵0

urms
cs

vrms
A
cs

C 0.5 0.01 �9.8⇥ 10�3 �1.6⇥ 10�2 �2.0⇥ 10�4 7.8⇥ 10�4 1.8⇥ 10�2 0.10 0.03
A 1.0 0.01 �1.7⇥ 10�2 �3.0⇥ 10�2 �3.3⇥ 10�4 1.1⇥ 10�3 3.5⇥ 10�2 0.11 0.04
D 2.0 0.01 �2.0⇥ 10�2 �3.6⇥ 10�2 �2.8⇥ 10�4 6.1⇥ 10�4 4.1⇥ 10�2 0.16 0.04
E 0.5 0.10 �5.5⇥ 10�2 �1.9⇥ 10�2 �6.2⇥ 10�4 �5.6⇥ 10�3 1.5⇥ 10�2 0.08 0.07
B 1.0 0.10 �5.3⇥ 10�2 �3.2⇥ 10�2 �1.2⇥ 10�2 2.3⇥ 10�3 1.8⇥ 10�2 0.09 0.12

Table 1. Summary of the simulation results for Runs A–E.

kf
hu0·b0ip
hu02ihb02i

hu0·w0ip
hu02ihw02i

hb0·j0ip
hu02ihw02i

↵neq

↵0

↵S
↵0

urms
cs

vrms
A
cs

A 30 �1.7⇥ 10�2 �3.0⇥ 10�2 �3.3⇥ 10�4 1.1⇥ 10�3 3.5⇥ 10�2 0.11 0.04
A2 10 �1.3⇥ 10�1 �1.2⇥ 10�1 1.3⇥ 10�3 �1.7⇥ 10�2 6.9⇥ 10�2 0.12 0.12
A3 3 �6.4⇥ 10�2 �2.1⇥ 10�1 �3.0⇥ 10�2 �6.0⇥ 10�3 5.5⇥ 10�2 0.19 0.09

Table 2. Summary of the simulation results for Runs A, A2, and A3.

enhancement of the ↵neq-effect visible for a stronger magnetic field (Run B) and weaker
gravity (Run E) corresponds to the enhancement of the cross-helicity with respect to the
kinetic one. Of course in the latter case (see figure 2), although the ↵neq coefficient has
the largest relative magnitude it also has a different sign than ↵S, hence in this case the
non-equilibrium effects tend to suppress the standard dynamo effect. In figure 3 we see,
that weak magnetic field and strong gravity have suppressed the non-equilibrium effect
to a very small relative magnitude.

At smaller scale separation, i.e., for smaller values of kf , we expect the turbulence
to be more intermittent and degree of non-stationarity to be enhanced. To address this
possibility, we have performed additional simulations for smaller values of kf with the
other parameters being the same as for Run A. The results shown in table 2 do show that
↵neq is twice as large when kf is reduced from 30 to 10, but an additional decrease of kf
from 10 to 3 does not lead to an additional increase of ↵neq. To some extent, however,
this is caused by the normalization by ↵0, which has increased by about 60%.

We conclude, that in fully developed helical turbulence, that is in turbulence with
strong kinetic helicity, the cross-helicity is rather likely to be produced as well and at
least for some periods of time the two helicities can coexist.

5. Conclusions

We have analysed the hydromagnetic dynamo process in non-equilibrium turbulence.
It was shown that in non-equilibrium MHD turbulence the effect of the infinitesimal-
impulse cross responses u0

$ b0 is pronounced, which vanishes in stationary state. This
creates additional terms in the expression for the large-scale electromotive force.

The main conclusion is that the non-equilibrium effects in MHD turbulence modify
the ↵-effect by introducing a correction dependent on the square of the non-dimensional
cross-helicity ⌥ = hu0

·b0
i/

p
hu02ihb02i, the kinetic helicity and their history in the MHD

turbulence, which takes the form provided in (3.23). This requires coexistence of both,
the kinetic and cross-helicities in the turbulent flow. The discussion of the production
mechanisms of the cross-helicity, provided in section 4 and the results of numerical

Validation of 𝜶neq by DNSs
Kinetic helicity
Cross helicity



Cross-interaction response functions

Co-existence of kinetic and cross helicities

Torsional cross correlations

Summary of non-equilibrium 
effects on dynamos

Non-equilibrium properties of turbulence



Beyond heuristic modelling



Mean-field equations in compressible MHD
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eddy viscosity

cross helicity

inhomogeneous helicity

D: deviatoric part

: absolute mean vorticity (mean vorticity + rotation)
mean velocity strain mean magnetic-field strain

Reynolds and turbulent Maxwell stress

Some main results of theoretical analysis

Turbulent electromotive force
Turb. Mag. Diffusivity Alpha effect

Cross-helicity effect Magnetic pumping
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• Model structures

• Transport coefficients
Beyond the heuristic modelling

Transport coefficients
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Turbulent magnetic 
reconnection
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Kinetic energy Magnetic energy

Spectral evolution
Electric-current and flow structures

Turbulence modeling approach to magnetic reconnection

Energy Cross helicity Helicity

Widmer, Büchner & Yokoi, Phys. Plasmas 23, 092304 (2016)

Guide field

Higashimori, Yokoi & Hoshino, PRL 110, 
255001 (2013)

Yokoi & Hoshino, Phys. Plasmas 18, 111208 (2011)



Self-consistent determination of turbulence timescale

Widmer, Büchner, and Yokoi (2019) Phys. Plasmas,  accepted on 25 Sep. 20198

Figure 3: Time history of the reconnection rate for di↵erent
initial values of the turbulent energy K0 for ⌘ = 10�4.

Figure 4: Eq. (51) for various K0. The case ⌘-MHD is
obtained for K0 = 0.

with the intensity of K, ", and ⌧ = K/" being taken at the
reconnection peak (Fig. 1).

Figure 4 represents Eq. (51) for various K0. A turbulent
energy intensity of K = 0.15 enhances the ⌘�MHD reconnec-
tion rate by a factor of about 3.2 independently of the initial
turbulence intensity K0. Figure 5 shows time history of the
turbulent reconnection rate to the ⌘�MHD ratio. The ratio
MT /MP is about 3.2 at the time both regime reach their sat-
uration state. Turbulence enhances the reconnection rate for
large magnetic Reynolds number above the ⌘�MHD value as
a Petschek-like reconnection. In marked contrast to the pre-
vious results obtained from the simulations with a constant
timescale parameter ⌧, only fast turbulent reconnection is ob-
tained. In fact, the other two regimes of energy conversion,
laminar reconnection and turbulent di↵usion, are not repro-
duced in the present work, where the timescale of turbulence
is self-consistently solved within the mean-field MHD equa-
tions. In this sense, the other two regimes, laminar recon-
nection and turbulent di↵usion, are artifacts arising from the
turbulence timescale as a constant parameter. Figure 6 depicts
the production PA,i, transport TA, advective V ·rA and dissipa-
tion ✏A terms in Eqs. (37)-(39) at t/tA = 120. The reconnection
rate initiates its saturation regime at this time. Here A refers
to K, W, or " and i = 1, 2. The turbulent energy production
term PK,1 = C�⌧K J2 is located at the current sheet center and

Figure 5: Time ratio of turbulent to ⌘�MHD reconnection
rate K0 = 0.1.

Figure 6: Contributing terms of Eqs. (37)-(39) at t/tA = 120,
⌘ = 10�4.

is mostly balanced by its dissipation term "K , a similar behav-
ior is obtained for the turbulent energy dissipation rate ". The
evolution of turbulence reaches a steady state resulting in a
saturation of the reconnected magnetic flux amount.

V. REMARK ON STRONG COMPRESSIBILITY LIMIT

The strong localisation of the turbulent energy di↵usive-
like term � around the reconnection region produces a
Petschek-like reconnection process.40 In such a situation, slow
shock-waves contributing to the fast Petschek-like reconnec-
tion are usually associated with large density variance at the
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Figure 3: Time history of the reconnection rate for di↵erent
initial values of the turbulent energy K0 for ⌘ = 10�4.

Figure 4: Eq. (51) for various K0. The case ⌘-MHD is
obtained for K0 = 0.

with the intensity of K, ", and ⌧ = K/" being taken at the
reconnection peak (Fig. 1).

Figure 4 represents Eq. (51) for various K0. A turbulent
energy intensity of K = 0.15 enhances the ⌘�MHD reconnec-
tion rate by a factor of about 3.2 independently of the initial
turbulence intensity K0. Figure 5 shows time history of the
turbulent reconnection rate to the ⌘�MHD ratio. The ratio
MT /MP is about 3.2 at the time both regime reach their sat-
uration state. Turbulence enhances the reconnection rate for
large magnetic Reynolds number above the ⌘�MHD value as
a Petschek-like reconnection. In marked contrast to the pre-
vious results obtained from the simulations with a constant
timescale parameter ⌧, only fast turbulent reconnection is ob-
tained. In fact, the other two regimes of energy conversion,
laminar reconnection and turbulent di↵usion, are not repro-
duced in the present work, where the timescale of turbulence
is self-consistently solved within the mean-field MHD equa-
tions. In this sense, the other two regimes, laminar recon-
nection and turbulent di↵usion, are artifacts arising from the
turbulence timescale as a constant parameter. Figure 6 depicts
the production PA,i, transport TA, advective V ·rA and dissipa-
tion ✏A terms in Eqs. (37)-(39) at t/tA = 120. The reconnection
rate initiates its saturation regime at this time. Here A refers
to K, W, or " and i = 1, 2. The turbulent energy production
term PK,1 = C�⌧K J2 is located at the current sheet center and

Figure 5: Time ratio of turbulent to ⌘�MHD reconnection
rate K0 = 0.1.

Figure 6: Contributing terms of Eqs. (37)-(39) at t/tA = 120,
⌘ = 10�4.
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ior is obtained for the turbulent energy dissipation rate ". The
evolution of turbulence reaches a steady state resulting in a
saturation of the reconnected magnetic flux amount.

V. REMARK ON STRONG COMPRESSIBILITY LIMIT

The strong localisation of the turbulent energy di↵usive-
like term � around the reconnection region produces a
Petschek-like reconnection process.40 In such a situation, slow
shock-waves contributing to the fast Petschek-like reconnec-
tion are usually associated with large density variance at the
reconnection region. We thus consider a contribution of the
density variance in the electromotive force E (Eq. (8))27,32

hv0 ⇥ b0i = ↵B � �µ0 J + �⌦ � �⇢̄r⇢̄ ⇥ B, (52)

7

(a) Mean current density J (b) Mean vorticity ⌦

(c) Turbulent energy K (d) Turbulent cross-helicity W

(e) Dissipation rate " (f) Turbulent timescale ⌧ = K/"

Figure 1: Spatial distributions of (a) the mean current density
J,(b) the mean vorticity ⌦, (c) the turbulent energy K, (d) the

turbulent cross-helicity W, (e) turbulent energy dissipation
rate ", and (f) the turbulent timescale ⌧ = K/" at the time the

reconnection rate saturates (t = 150⌧A). K0 = 0.01 The
resistivity is ⌘ = 10�4.

Figure 2: Regulated turbulent timescale ⌧R as a function of ⌧
for various regulators.

localized anomalous resistivity located at and around the ‘X’-
point. Also, the turbulence energy dissipation rate " is finite at
and around the di↵usion region where the turbulence energy K
is maximum. The location where " is finite also represents the
region in which the large scale magnetic field energy is trans-
ported to smaller scales where it can be more e↵ectively dis-
sipated. The timescale of turbulence ⌧ is therefore maximum
near the di↵usion region where magnetic reconnection takes
place. The intensity of ⌧ is in the range [1.2; 1.4] correspond-
ing to the regimes of fast turbulent reconnection obtained for
a constant turbulence timescale.23,24

In previous works, a regime of slow energy conversion sim-
ilar to the ⌘-MHD rate (laminar reconnection) and that of tur-
bulent di↵usion with slower rate of energy conversion (turbu-
lent di↵usion) were obtained as well as the regime of fast re-
connection (turbulent reconnection).23,24 These regimes were
consequences of variation of an adjustable timescale param-
eter ⌧ or the initial turbulence energy intensity K0 as being
independent parameters. In this work, only the initial inten-
sity of the turbulence energy Kinit is varied because the coun-
terpart of the energy dissipation rate, "0, is directly related to
K0 by Eq. (46). The model constants C�, C�, C"n(n = 1 � 3)
obtained from the turbulence modeling are not varied. Also,
the current-density intensity is determined by the Harris-type
current sheet initialization.

Figure 3 presents the time evolution of the reconnection rate
as Kinit is varied for a resistivity ⌘ = 10�4. Turbulence pro-
duces fast reconnection in comparison to the ⌘-MHD regime.

Because the turbulence di↵usivity (�) is localized, the
Petschek model of reconnection describing a localized di↵u-
sion region due to standing shock waves40 is a more appropri-
ate estimation of the magnetic reconnection rate. According
to the Petschek model, the reconnection rate (MP) is expected
to be proportional to the inverse of the logarithm of the mag-
netic Reynolds number as

MP ⇡
1

log(Rm)
⇠

1
log 1/⌘

(50)

Utilizing Eq. (50), the turbulent reconnection rate (MT) may
be estimated as

MT ⇡
log ⌘

log (� + ⌘)
MP ⇡ 3.2MP, (51)

Reconnection rate with  
changing initial turbulent energy

Budget of turbulent energy K, cross helicity W, 
and energy dissipation rate 𝜀

Spatial distributions of mean 
and turbulent quantities
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