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1.1 THE FUNDAMENTAL PROBLEM OF TURBULENCE

1.1.1 The Closure Problem
du
dt

+ uu + ru = 0 (1.1)

du
dt

+ uu + ru = 0 (1.2)

uu = uu + u′u′ 6= uu (1.3)

1
2

du2

dt
+ uuu + ru2 = 0 (1.4)

Suppose that:
uuuu = αuuuu + βuuu (1.5)

where α and β are some parameters, and closures set in physical space or in spectral space.
Navier-Stokes equations:

∂u
∂t

+ (v · ∇)u = −∂p
∂x

− ∇ · v ′u′. (1.6)

In Cartesian coordinates

∇ · v ′u′ =
∂
∂x
u′u′ +

∂
∂y
u′v ′ +

∂
∂z
u′w ′ (1.7)

These are Reynolds stress terms.
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1.1.2 Triad Interactions
Dζ
Dt

=
∂ζ
∂t

+ J(ψ, ζ ) = F + ν∇2ψ, ζ = ∇2ψ. (1.8)

ψ(x, y, t) =
∑
k

ψ̃(k, t) eik·x, ζ (x, y, t) =
∑
k

ζ̃ (k, t) eik·x, (1.9)

where k = ikx + jky , ζ̃ = −k2ψ̃
k2 = kx2

+ ky2

ψ̃(kx, ky , t) = ψ̃ ∗(−kx,−ky , t),

∂
∂t

∑
k

ζ̃ (k, t) eik·x = −
∑
p

pxψ̃(p, t) eip·x ×
∑
q

qy ζ̃ (q, t) eiq·x

+
∑
p

pyψ̃(p, t) eip·x ×
∑
q

qxζ̃ (q, t) eiq·x.
(1.10)

Multiply (1.10) by exp(−ik · x) and integrating over the domain,∫
eip·x eiq·x dA =

1

L2
δ(p + q). (1.11)

Using this, (1.10) becomes

∂
∂t
ψ̃(k, t) =

∑
p,q

A(k,p,q)ψ̃(p, t)ψ̃(q, t) + F̃ (k) − νk4ψ̃(k, t), (1.12)

where A(k,p,q) = (q2/k2)(pxqy − pyqx)δ(p + q − k) (An ‘interaction coefficient’)
Only triads with p + q = k make a nonzero contribution.
Two types of interactions:

(i) Local interactions, in which k ∼ p ∼ q;
(ii) Nonlocal interactions, in which k ∼ p� q.

Assume local triad interactions dominate.
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Fig. 1.1 Two interacting triads, each with k = p + q. On the left, a local triad with k ∼ p ∼ q. On
the right, a nonlocal triad with k ∼ p� q.
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1.2 THE KOLMOGOROV THEORY

Fig. 1.2 Schema of a transfer of energy to smaller scales.
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Consider high Reynolds number (Re) incompressible flow that is being maintained by some external force.
Then the evolution of the system is governed by

∂v
∂t

+ (v · ∇)v = −∇p + F + ν∇2v (1.13)

and
∇ · v = 0 (1.14)

The energy equation is

dÊ
dt

=
d
dt

∫
1
2
v 2 dV =

∫ (
F · v + νv · ∇2v

)
dV =

∫ (
F · v − νω2) dV (1.15)

where Ê is the total energy. Must include viscosity!
Viscous terms will important when

Lν ∼
ν
V
. (1.16)

Millimeters! Energy cascades to small scales!
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1.2.1 The theory and scaling of Kolmogorov

u(x, y, z, t) =
∑

kx,ky ,kz

ũ(kx, ky , kz, t) ei (k
xx+kyy+kzz) (1.17)

Energy:

Ê =
∫
E dV =

1
2

∫
(u2 + v2 + w2)dV = E(k) dk (1.18)

where E(k) is the energy spectral density, or the energy spectrum,

Assume:

(i) There exists a range of scales intermediate between the large scale and the dissipation scale where
neither forcing nor dissipation are explicitly important to the dynamics.

(ii) There is a constant flux of energy from large scales equal to ε.

Write:

E(k) = g(ε, k, k0, kν) (1.19)

In inertial range:

E(k) = g(ε, k). (1.20)

The function g is, within this theory, universal, the same for every turbulent flow.
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Quantity Dimension
Wavenumber, k 1/L
Energy per unit mass, E U2 = L2/T 2

Energy spectrum, E(k) EL = L3/T 2

Energy Flux, ε E/T = L2/T 3

If E = f (ε, k) then the only dimensionally consistent relation for the energy spectrum is

E = Kε2/3k−5/3

where K is a universal dimensionless constant ≈ 1.5.
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1.2.2 Eddy turnover time

τk = [E(k)k3]−1/2 (1.21)

Then we posit that

ε ∼
E(k)k
τk

(1.22)

So that

ε ∼
E(k)k

[E(k)k3]−1/2
= [E(k)]3/2k5/2 (1.23)

So that
E(k) = Kε2/3k−5/3 (1.24)
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Fig. 1.3 The energy spectrum of 3D turbulence measured in some experiments at the Princeton
Superpipe facility. The outer plot shows the spectra from a large-number of experiments at
different Reynolds numbers, with the magnitude of their spectra appropriately rescaled. Smaller
scales show a good -5/3 spectrum, whereas at larger scales the eddies feel the effects of the pipe
wall and the spectra are a little shallower. The inner plot shows the spectrum in the centre of the
pipe in a single experiment at Re ≈ 106.
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The viscous scale and energy dissipation

The viscous term is ν∇2u so that a viscous or dissipation timescale at a scale k−1, τνk , is

τνk ∼
1

k2ν
, (1.25)

The eddy turnover time, τk — that is, the inertial timescale — in the Kolmogorov spectrum is

τk = ε
−1/3k−2/3. (1.26)

Give:

kν ∼
(
ε
ν3

)1/4

, Lν ∼
(
ν3

ε

)1/4

. (1.27a,b)

Lν is called the Kolmogorov scale.
In atmosphere and ocean: Lν ∼ 1mm.
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1.2.3 * An alternative scaling argument for inertial ranges

Euler equations are invariant under

x → xλ v → vλr t → tλ1−r , (1.28)

where r is an arbitrary scaling exponent.
Assume:

(i) That the flux of energy from large to small scales (i.e., ε) is finite and constant.
(ii) That the scale invariance (1.28) holds, on a time-average, in the intermediate scales between the forcing

scales and dissipation scales.
Dimensional analysis

εk ∼
v3
k

lk
∼ λ3r−1. (1.29)

But ε is independent of scale so r = 1/3. The velocity then scales as

vk ∼ ε1/3k−1/3, (1.30)

On dimensional grounds,
E(k) ∼ v2

kk
−1 ∼ ε2/3k−2/3k−1 ∼ ε2/3k−5/3. (1.31)
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1.3 TWO-DIMENSIONAL TURBULENCE
∂ζ
∂t

+ u · ∇ζ = F + ν∇2ζ (1.32)

u = −∂ψ/∂y , v = ∂ψ/∂x, and ζ = ∇2ψ so that

∂∇2ψ
∂t

+ J(ψ,∇2ψ) = F + ν∇4ψ. (1.33)

Two conserved quantities:

Ê =
1
2

∫
A
(u2 + v2) dA =

1
2

∫
A
(∇ψ)2 dA,

dÊ
dt

= 0, (1.34a)

Ẑ =
1
2

∫
A
ζ2 dA =

1
2

∫
A
(∇2ψ)2 dA,

dẐ
dt

= 0. (1.34b)
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Initial Later

Fig. 1.4 In incompressible two-dimensional flow, a band of fluid will generally be elongated, but
its area will be preserved. Since vorticity is tied to fluid parcels, the values of the vorticity in the
hatched area (and in the hole in the middle) are maintained; thus, vorticity gradients will increase
and the enstrophy is thereby, on average, moved to smaller scales.

1.3.1 Energy and Enstrophy Transfer

Energy is transferred to large scales! Why

I Vorticity elongation

Band is elongated. Vorticity gradients increase. Enstrophy moves to small scales

Ê = −1
2

∫
ψζ dA, (1.35)

Solving the Poisson equation ∇2ψ = ζ leads to the scale of the streamfunction becoming larger in the
direction of stretching, but virtually no smaller in the perpendicular direction. Hence, on average, the scale
of the streamfunction increases.
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II An energy-enstrophy conservation argument

Total energy and enstrophy:

Ê =
∫
E(k) dk, Ẑ =

∫
Z(k) dk =

∫
k2E(k) dk, (1.36)

Centroid,

ke =

∫
kE(k)dk∫
E(k) dk

(1.37)

I ≡
∫

(k − ke)2E(k) dk,
dI
dt
> 0. (1.38)

Expanding

I =
∫
k2E(k)dk − 2ke

∫
kE(k) dk + k2

e

∫
E(k) dk

=
∫
k2E(k)dk − k2

e

∫
E(k) dk, (1.39)

because ke =
∫
kE(k) dk is, from (1.37), the energy-weighted centroid.

Because both energy and enstrophy are conserved, (1.39) gives

dk2
e

dt
= − 1

Ê

dI
dt
< 0. (1.40)

Thus, the centroid of the distribution moves to smaller wavenumber and to larger scale
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Fig. 1.5 In two-dimensional flow, the centroid of the energy spectrum will move to large scales
(smaller wavenumber) provided that the width of the distribution increases, which can be ex-
pected in a nonlinear, eddying flow

Enstrophy: Let j = 1/k.

J =
∫

(q − qe)2Z(q) dq,
dJ
dt

> 0, (1.41)

But
∫
q2Z(q) dq is conserved - Energy
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1.3.2 Enstrophy inertial ranges in 2D turbulence

In the enstrophy inertial range the enstrophy cascade rate η, equal to the rate at whicn enstrophy is supplied
by stirring, is assumed constant. By analogy with (1.22) we may assume that this rate is given by

η ∼
k3E(k)
τk

. (1.42)

τk = [E(k)k3]−1/2 (1.43)

we obtain

E(k) = Kηη
2/3k−3 , (1.44)

where Kη is a universal constant
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Fig. 1.6 The energy spectrum of two-dimensional turbulence. (Compare with Fig. 1.2.1.) Energy
supplied at some rate ε is transferred to large scales, whereas enstrophy supplied at some rate η
is transferred to small scales, where it may be dissipated by viscosity. If the forcing is localized
at a scale k−1

f then η ≈ k2
f ε.
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Energy inertial range

Same as the three-dimensional case,

E(k) = Kεε
2/3k−5/3 , (1.45)

Same as 3D case, except energy transfer to larger scales.
Equate frictional timescale r−1 to inertial timescale:

r−1 = ε−1/3k−2/3
r −→ kr =

(
r3

ε

)1/2

, (1.46)

where kr is the frictional wavenumber. Frictional effects are important at scales larger than k−1
r .
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1.3.3 Numerical illustrations

Fig. 1.7 Nearly-free evolution of vorticity (grayscale) and streamfunction (contours).
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Figure 1.9 The energy spectrum in a numerical simulation of
forced-dissipative two-dimensional turbulence. The fluid is stirred
at wavenumber kf and dissipated at large scales with a linear drag,

and there is an k−5/3 spectrum at intermediate scales. The arrows
schematically indicate the direction of the energy flow.

Fig. 1.8 Vorticity evolution
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1.4 * PREDICTABILITY OF TURBULENCE

Weather is unpredictable! Why? How much?
Errors cascade to larger scales.
Time taken is:

T =
∫ k1

k0

τk d(lnk) =
∫ k1

k0

[k3E(k)]−1/2 d(lnk), (1.47)

treating the wavenumber spectrum as continuous.
If E = Ak−n we get:

T =
2

A1/2(n − 3)

[
k (n−3)/2

]k1

k0

. (1.48)

for n 6= 3, and T = A−1/2 ln(k1/k0) for n = 3.
In two and three dimensions:

T2d ∼ η−1/3 ln(k1/k0),

T3d ∼ ε−1/3k−2/3
0

. (1.49a,b)

As k1 → ∞, that is as the initial error is confined to smaller and smaller scales, predictability time grows
larger for two dimensional turbulence (and for n ≥ 3 in general), but remains finite for three dimensional
turbulence.
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1.5 * SPECTRUM OF A PASSIVE TRACER
Dφ
Dt

= F [φ] + κ∇2φ, (1.50)

where F [φ] is the stirring of the dye, and κ is its diffusivity
Prandtl number: σ ≡ ν/κ.
If the dye is stirred at a rate χ then

Kχχ ∝
P (k)k
τk

, (1.51)

where P (k) is the spectrum of the tracer, k is the wavenumber, τk is an eddy timescale and Kχ is a constant,
not necessarily the same constant in all cases.

Assume that τk is given by
τk = [k3E(k)]−1/2. (1.52)

If energy spectrum E(k) = Ak−n, then (1.51) becomes

Kχχ =
P (k)k

[Ak3−n]−1/2
, (1.53)

and

P (k) = KχA
−1/2χk (n−5)/2 . (1.54)
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If the energy spectrum is steeper than −3 we use

τk =
[∫ k
k0

p2E(p)dp
]−1/2

, (1.55)

Shallow spectrum — gives same as before. If steeper than −3 then

τk = [k3
0E (k0)]−1/2 (1.56)

and

P (k) = K′
χχτk0

k−1 , (1.57)

Tracer cascade is always to smaller scales.
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1.5.1 Examples

Energy inertial range flow in three dimensions

If A = Kε2/3 then tracer spectrum
P (k) = K3d

χ ε
−1/3χk−5/3. (1.58)

Experiments confirm. K3d
χ ≈ 0.5 − 0.6 in three dimensions.

Inverse energy-cascade range in two-dimensional turbulence

The tracer spectrum is then
P (k) = K2d

χ ε
−1/3χk−5/3, (1.59)

the same as (1.58), although ε is now the energy cascade rate to larger scales and the constant K2d
χ does

not necessarily equal K3d
χ .

Enstrophy inertial range in two-dimensional turbulence

In the forward enstrophy inertial range the eddy timescale is τk = η
−1/3 (assuming of course that the classical

phenomenology holds). Directly from (1.51) the corresponding tracer spectrum is then

P (k) = K2d*
χ η−1/3χk−1. (1.60)

The passive tracer spectrum now has the same slope as the spectrum of vorticity variance (i.e., the en-
strophy spectrum), which is perhaps comforting since the tracer and vorticity obey similar equations in two
dimensions.
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Fig. 1.10 The energy spectra, E(k) and passive tracer spectra P (k) in large Prandtl number three-
dimensional turbulence (top) and two-dimensional turbulence (bottom).
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2.1 DIFFERENTIAL ROTATION IN TWO-DIMENSIONAL TURBULENCE

With rotation:
Dq
Dt

= 0 (2.1)

where q = ζ + f .
Let f = f0 + βy .

D
Dt

(ζ + βy) = 0 or
Dζ
Dt

+ βv = 0. (2.2a,b)

If β is big, βv = 0. Flow is zonal.

2.1.1 Scaling
∂ζ
∂t

+ u · ∇ζ + βv = 0. (2.3)

Scales as
U
LT

U2

L2
βU (2.4)

The cross-over scale, or the ‘β-scale’ or ‘Rhines scale’ Lβ, is given by

Lβ ∼

√
U
β
, kβ ∼

√
β
U

(2.5)

Alternatively, ζ ∼ Z and
Z
T

:
UZ
L

: βU (2.6)

Equating the second and third terms gives the scale

LβZ =
Z
β
. (2.7)
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Better:

The eddy-turnover time is

τturbulence = ε−1/3k−2/3, (2.8)

τβ =
k
β

(2.9)

gives

kβ ∼
(
β3

ε

)1/5

. (2.10)
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Fig. 2.1 Three estimates of the wave-turbulence cross-over, in wavenumber space. Where the
Rossby wave frequency is larger (smaller) than the turbulent frequency, i.e., at large (small)
scales, Rossby waves (turbulence) dominate the dynamics.
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Anisotropy

ωβ = − βkx

kx2 + ky2
Ωturbulence ∼ ε1/3k2/3 (2.11)

ε1/3k2/3 =
βkx

k2
(2.12)

where k is the isotropic wavenumber. Solving this gives expressions for the x- and y-wavenumber compo-
nents of the wave-turbulence boundary, namely

kxβ =

(
β3

ε

)1/5

cos8/5 θ, kyβ =

(
β3

ε

)1/5

sinθ cos3/5 θ, (2.13)

θ = tan−1(ky/kx).
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Fig. 2.2 The anisotropic wave-turbulence boundary kβ, in wave-vector space calculated by equat-

ing the turbulent eddy transfer rate, proportional to k2/3 in a k−5/3 spectrum, to the Rossby wave
frequency βkx/k2, as in (2.13).
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Fig. 2.3 Evolution of the energy spectrum in a freely-evolving two-dimensional simulation on the
β-plane.

gfdsemi
ノート
gfdsemi : Marked

gfdsemi
テキストボックス
Vallis, G. K., Maltrud, M. E., 1993: 
J. Phys. Oceanogr., 23, 1346--1362 
FIG.4.
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Fig. 2.4 Evolution of vorticity (greyscale, left column) and streamfunction (contour plots, right column) in
physical space.
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Fig. 2.5 Left: Gray-scale image of zonally average zonal velocity (u) as a function of time and

latitude (Y), produced in a simulation forced around wavenumber 80 and with kβ =
√
β/U ≈ 10

(in a domain of size 2π). Right: Values of ∂2u/∂y2 as a function of latitude, late in the integration.
Jets form very quickly from the random initial conditions, and are subsequently quite steady.
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2.2 STRATIFIED GEOSTROPHIC TURBULENCE

2.2.1 Quasi-geostrophic flow as an analogue to two-dimensional flow

Now let us consider stratified effects in a simple setting, namely the quasi-geostrophic equations with con-
stant Coriolis parameter and constant stratification. The (dimensional) unforced and inviscid governing equa-
tion may then be written

Dq
Dt

= 0, q = ∇2ψ + Pr 2∂
2ψ
∂z2

, (2.14a)

where Pr = f0/N. (D/Dt is two-dimensional.
Boundary conditions

D
Dt

(
∂ψ
∂z

)
= 0, at z = 0, H. (2.14b)

Two quadratic invariants of the motion:

dÊ
dt

= 0, Ê =
∫
V

[
(∇ψ)2 + Pr 2

(
∂ψ
∂z

)2]
dV,

dẐ
dt

= 0, Ẑ =
∫
V
q2 dV =

∫
V

[
∇2ψ + Pr 2

(
∂2ψ
∂z2

)]2

dV.

(2.15)
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2.2.2 Two-layer flow
∂qi
∂t

+ J(ψi , qi ) = 0, i = 1,2, (2.16)

where (if β = 0)

q1 = ∇2ψ1 +
1
2
k2

d (ψ2 − ψ1), q2 = ∇2ψ2 +
1
2
k2

d (ψ1 − ψ2), (2.17a)

J(a, b) =
∂a
∂x

∂b
∂y

− ∂b
∂y

∂a
∂x
,

1
2
k2

d =
2f 2

0

g′H
≡

4f 2
0

N2H2
. (2.17b)

dÊ
dt

= 0, Ê =
1
2

∫ [
(∇ψ1)2 + (∇ψ2)2 +

1
2
k2

d (ψ1 − ψ2)2

]
dA, (2.18)

dẐ1

dt
= 0, Ẑ1 =

∫
A
q2

1 dA, (2.19)

dẐ2

dt
= 0, Ẑ2 =

∫
A
q2

2 dA. (2.20)
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Baroclinic and barotropic decomposition

Define the barotropic and barotropic streamfunctions by

ψ ≡ 1
2

(ψ1 + ψ2), τ ≡ 1
2

(ψ1 − ψ2). (2.21)

Then

∂
∂t

∇2ψ + J(ψ,∇2ψ) + J(τ, (∇2 − k2
d )τ) = 0 (2.22a)

∂
∂t

(∇2 − k2
d )τ + J(τ,∇2ψ) + J(ψ, (∇2 − k2

d )τ) = 0 (2.22b)

Triad interactions:

(ψ,ψ) → ψ, (τ, τ) → ψ, (ψ, τ) → τ . (2.23)

Pseudo-wavenumber for baroclinic mode, τ:

∇2 → ∇2 − k2
d , k2 → k2 + k2

d (2.24)
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Conservation properties

T̂ =
∫
A
(∇ψ)2 dA,

dT̂
dt

=
∫
A
ψJ(τ, (∇2 − k2

d )τ) dA (2.25a)

Ĉ =
∫
A
[(∇τ)2 + k2

dτ
2] dA,

dĈ
dt

=
∫
A
τJ(ψ, (∇2 − k2

d )τ) dA. (2.25b)

dÊ
dt

=
d
dt

(T̂ + Ĉ) = 0. (2.26)

Enstrophy:

dẐ
dt

= 0, Ẑ =
∫
A
(∇2ψ)2 +

[
(∇2 − k2

d )τ
]2

dA. (2.27)

Spectra:

T̂ =
∫
T (k) dk and Ĉ =

∫
C(k) dk, (2.28)

Ẑ =
∫
Z(k) dk =

∫ [
k2T (k) + (k2 + k2

d )C(k)
]

dk. (2.29)
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2.2.3 Approximations to the equations

∂
∂t

∇2ψ + J(ψ,∇2ψ) = −J(τ, (∇2 − k2
d )τ) + D[ψ ], (2.30a)

∂
∂t

(∇2 − k2
d )τ + J(τ,∇2ψ) + J(ψ, (∇2 − k2

d )τ) + U
∂
∂x

(∇2ψ + k2
dψ) = D[τ]. (2.30b)

At large scales Baroclinic Mode

∂
∂t

(−k2
dτ) + J(ψ,−k2

dτ) = 0 (2.31)

or

∂τ
∂t

+ J(ψ, τ) = 0,
∂τ
∂t

+ u · ∇τ = 0. (2.32)
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2.2.4 Triad interactions

Barotropic triads: As if τ = 0

Energy:
d
dt

(
T (k) + T (p) + T (q)

)
= 0, (2.33)

Enstrophy:
d
dt

(
k2T (k) + p2T (p) + q2T (q)

)
= 0. (2.34)

Baroclinic triads: Two baroclinic wavenumbers (say p, q) interacting with a barotropic wavenumber (say
k).

Energy:
d
dt

(T (k) + C(p) + C(q)) = 0, (2.35a)

Enstrophy:
d
dt

(
k2T (k) + (p2 + k2

d )C(p) + (q2 + k2
d )C(q)

)
= 0. (2.35b)
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Four cases of baroclinic triad:

I. (p, q) � kd. Then neglect k2
d in (2.35a) and (2.35b), and a baroclinic triad behaves like a barotropic triad,

for (2.35b) is similar to (2.34). Alternatively, but equivalently, reconsider the layer form of the equations,

∂qi
∂t

+ J(ψi , qi ) = 0 (2.36)

where
qi = ∇2ψi + k

2
d (ψj − ψi ) ≈ ∇2ψi i = 1,2, j = 3 − i (2.37)

In this case, each layer is decoupled from the other.

II. (p, q, k) � kd. The energy and enstrophy conservation laws collapse to:

d
dt

(C(p) + C(q)) = 0. (2.38)

Energy is conserved among the baroclinic modes alone No constraint preventing the transfer of baro-
clinic energy to smaller scales, and no production of barotropic energy at k � kd.

Equation of motion is
∂
∂t

(−k2
dτ) + J(ψ,−k2

dτ) = 0 (2.39)

or
∂τ
∂t

+ J(ψ, τ) = 0,
∂τ
∂t

+ u · ∇τ = 0. (2.40)

τ is advected like a passive tracer.
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III. (p, q, k) ∼ kd. Both baroclinic and barotropic modes are important. Let k ′2 ≡ k2 + k2
d for a baroclinic

mode and k ′2 = k2 for a barotropic mode, and similarly for p′ and q′. Then

d
dt

(E(k) + E(p) + E(q)) = 0, (2.41a)

d
dt

(
k ′2E(k) + p′2E(p) + q′2E(q)

)
= 0 (2.41b)

Energy seek the gravest (smallest pseudo-wavenumber) mode. Since the gravest mode has kd = 0 this
implies a barotropization of the flow.

IV. Baroclinic Instability.

p� (k, q, kd). The conservation laws are,

d
dt

(T (k) + C(p) + C(q)) = 0,

d
dt

(
k2T (k) + k2

dC(p) + (q2 + k2
d )C(q)

)
= 0.

(2.42)

From these, and with k2 ≈ q2, we derive

k2Ċ(q) = (k2
d − k2)Ṫ (k). (2.43)

k2 < k2
d . (2.44)

Thus, there is a high-wavenumber cut-off for baroclinic instability.
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Fig. 2.6 Idealized two-layer baroclinic turbulence.
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Figure 2.7 Energy spectra of the zonal and
meridional wind near the tropopause, from
thousands of commercial aircraft measure-
ments between 1975 and 1979. The merid-
ional spectrum is shifted one decade to the
right. (From Gage and Nastrom 1986)
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2.3 SCALING THEORY

2.3.1 Preliminaries

Equations with shear:

∂
∂t

∇2ψ + J(ψ,∇2ψ) + J(τ, (∇2 − k2
d )τ) + U

∂
∂x

∇2τ = D[ψ ], (2.45a)

∂
∂t

(∇2 − k2
d )τ + J(τ,∇2ψ) + J(ψ, (∇2 − k2

d )τ) + U
∂
∂x

(∇2ψ + k2
dψ) = D[τ]. (2.45b)

Large scales: ∇2 ∼ k2 � k2
d :

∂
∂t

∇2ψ + J(ψ,∇2ψ) = −J(τ,∇2τ) − U ∂
∂x

∇2τ + D[ψ ], (2.46)

∂τ
∂t

+ J(ψ, τ) = U
∂ψ
∂x

+ D[τ]. (2.47)

(i) The equation for ψ is just the barotropic vorticity equation
(ii) The equation for the τ is passive scalar, except for the forcing term U∂ψ/∂x.

Energy cascade to large barotropic scales with energy spectrum given by

Eψ (k) = K1ε
2/3k−5/3, (2.48)

Baroclinic energy spectrum — passive tracer cascade to small scales:

Eτ(k) = K2ετε
−1/3k−5/3, (2.49)

ετ = ε,
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2.3.2 Scaling properties

Barotropic energy: (∇ψ)2

Baroclinic energy: (∇τ)2 + k2
dτ

2 ∼ k2
dτ

2

|ψ | ∼
kd|τ|
k0

� |τ|. (2.50)

∂τ
∂t

+ J(ψ, τ − Uy) = 0, (2.51)

suggests that

τ ∼ l ′ ∂τ
∂y

= −l ′U (2.52)

l ′ is eddy scale
Thus, at the scale k−1

0

τ ∼ U
k0

, vτ ∼ U. (2.53)

and

ψ ∼
kdU

k2
0

, vψ ∼
kdU
k0

. (2.54)

Energy Flux:
Multiplying (2.47) by k2

dτ and integrate:

d
dt

APE =
1
2

d
dt

∫
A
k2

dτ
2 dA =

∫
A
Uk2

dτ
∂ψ
∂x

dA (2.55)

so

ε = Uk2
dψxτ ∼

U3k3
d

k2
0

. (2.56)
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2.3.3 The halting scale and the β–effect

Let us suppose that the β–effect provides a barrier for the inverse cascade at the scale (2.10), namely
kβ ∼ (β3/ε)1/5. Using (2.56) this becomes

kβ =
β
Ukd

, (2.57)

This can also be derived by writing

k2
β =

β
vψ
, vψ =

kdU
kβ

(2.58)

so that kβ = β/(Ukd).
Energy flux and the eddy diffusivity,

ε ∼
U5k5

d

β2
, κ ∼

U3k3
d

β2
(2.59)

The magnitudes of the eddies themselves are easily given using (2.54) and (2.53), whence

τ ∼
U2kd

β
, vτ ∼ U, ψ ∼

U3k3
d

β2
, vψ ∼

U2k2
d

β
= U

kd

kβ
(2.60)

Using vψ = ψkβ and kβ = β/(Ukd).
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2.4 * PHENOMENOLOGY

(i) An assumption about the magnitude of the baroclinic eddies;
(ii) An assumption relating eddy kinetic energy to eddy available potential energy;
(iii) An assumption about the horizontal scale of the eddies.

(i) Assume

b′ ∼ Le|∇b| , (2.61)

or (equivalently)

b′ ∼ Lef
∂u
∂z

and v ′τ ∼ u, (2.62a,b)

(ii) EKE = eddy APE. v2
ψ ∼ (b′/N)2 or

v ′ψ ∼ b′

N
. (2.63)

Now, b′ = f0τ/H so

vψ =
f0τ

NH
= kdτ. (2.64)

(iii) Le ∼ Lβ. Length scale is Rhines scale.



50 Chapter 2. Geostrophic Turbulence

Consequences

Eddy amplitudes

v ′ψ ∼
f Le
NH

u ≈
Le

Ld

u (2.65)

where Ld = NH/f0 is the deformation radius and u is the amplitude of the mean baroclinic velocity, that is
the mean shear multiplied by the height scale.

Timescales

TE ∼
Le

v ′ψ
∼
Ld

u
, (2.66)

and this is simply the Eady timescale. That it, the eddy timescale (at the scale of the largest eddies) is
independent of the process that ultimately determines the spatial scale of those eddies; if the eddy length
scale increases somehow, perhaps because friction or β are decreased, the velocity scale increases in
proportion.
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2.4.1 Baroclinic lifecycles

Horizontal Wavenumber

Fig. 2.8 A numerical simulation of a very idealized baroclinic lifecyle, showing contours of energy in spectral
space at successive times. Initially, there is baroclinic energy at low horizontal wavenumber, as in a large-
scale shear. Baroclinic instability transfers this energy to barotropic flow at the scale of the deformation
radius, and this is followed by a barotropic inverse cascade to large scales. Most of the transfer to the
barotropic mode in fact occurs quite quickly, between times 11 and 14, but the ensuing barotropic inverse
cascade is slower. The entire process may be thought of as a generalized inverse cascade. The stratification
(N2) is uniform, and the first deformation radius is at about wavenumber 15. There is no friction in the
simulation, except for a small hyperviscosity to remove small scale noise. Times are in units of eddy
turnover time.
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Figure 2.9 Top: Energy conversion and dissipation processes in a nu-
merical simulation of an idealized atmospheric baroclinic lifecycle, sim-
ulated with a GCM Bottom: Evolution of the maximum zonal-mean ve-
locity. AZ and AE are zonal and eddy available potential energies, and
KZ and KE the corresponding kinetic energies. Initially baroclinic pro-
cesses dominate, with conversions from zonal to eddy kinetic energy
and then eddy kinetic to eddy available potential energy, followed by
the barotropic conversion of eddy kinetic to zonal kinetic energy. The
latter process is reflected in the increase of the maximum zonal-mean
velocity at about day 10.

gfdsemi
テキストボックス
Simmons, A., Hoskins, B., 1978: 
J. Atmos. Sci., 35, 414--432. 
(up) FIG.5. (down) FIG.11.
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2.4.2 Baroclinic Eddies in the Ocean

Fig. 2.10 The oceanic first deformation radius Ld, calculated by using the observed stratification
from the eigenproblem:
∂2φ/∂z2 + (N2(z)/c2)φ = 0 with φ = 0 at z = 0 and z = −H, where H is the ocean depth and N
is the observed buoyancy frequency. The deformation radius is given by Ld = c/f where c is
the first eigenvalue and f is the latitudinally varying Coriolis parameter. Near equatorial regions
are excluded, and regions of ocean shallower than 3500 m are shaded. Variations in Coriolis
parameter are responsible for much of large-scale variability, although weak stratification also
reduces the deformation radius at high latitudes.

gfdsemi
テキストボックス
Chelton, D. B., De Szoeke, R. A., 
Schlax, M. G., Naggar, K. E., 
Siwertz, N., 1998: 
J. Phys. Oceanogr., 28, 433--460
FIG.6.
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Fig. 2.11 Idealized baroclinic lifecyle, similar to that in Fig. 2.8, but with enhanced stratification
of the basic state in the upper domain, representing the oceanic thermocline.
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3.1 POTENTIAL VORTICITY FLUX

In shallow water

Q =
ζ + f
h

(3.1)

If h = H + h′ and h′ � H , and f = f0 + βy , then

Q ≈ 1
H

[
(f + ζ )(1 − h

′

H
)
]

(3.2)

so we define

q = ζ + βy − (f0η/H) = ∇2ψ + βy − k2
dψ (3.3)

where ψ = gη/f0 and k2
d = f 2

0 /(gH).
And the meridional flux of potential vorticity:

v ′q′ = v ′ζ ′ −
f0
H
v ′h′ (3.4)
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3.2 * THE ELIASSEN-PALM FLUX

q = ζ + f +
f0
N2

∂b
∂z
, b = f0

∂ψ
∂z

, ζ = ∇2ψ (3.5)

So

v ′q′ = v ′ζ ′ + f0v
′ ∂
∂z

(
b′

N2

)
(3.6)

f0v
′ ∂
∂z

(
b′

N2

)
= f0

∂
∂z

(
v ′b′

N2

)
−
f 2
0

N2

∂
∂x

(
1
2
∂ψ ′

∂z

)2
(3.7)

using b′ = f0∂ψ
′/∂z.

v ′ζ ′ = − ∂
∂y
u′v ′ +

1
2
∂
∂x

(v ′2 − u′2) (3.8)

Thus:

v ′q′ = − ∂
∂y

(u′v ′) +
∂
∂z

(
f0
N2
v ′b′
)
+
∂
∂x

(
1
2

(v ′2 − u′2) − b
′2

N2

)
(3.9)

v ′q′ = − ∂
∂y
u′v ′ +

∂
∂z

(
f0
N2
v ′b′
)
. (3.10)
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Eliassen-Palm flux

F ≡ −u′v ′ j +
f0
N2
v ′b′ k (3.11)

So that:
v ′q′ = ∇ · F (3.12)
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3.2.1 Eliassen-Palm relation

Linear PV:
∂q′

∂t
+ u

∂q′

∂x
+ v ′

∂q
∂y

= D′, (3.13)

Enstrophy equation:
1
2
∂
∂t
q′2 = −v ′q′∂q

∂y
+ D′q′. (3.14)

So we get the Eliassen-Palm relation:

∂A
∂t

+ ∇ · F = D , (3.15a)

where

A =
q′2

2∂q/∂y
, D =

D′q′

∂q/∂y
(3.15b)

Integrate, with D = 0
d
dt

∫
A
AdA = 0. (3.16)

Pseudomomentum or wave activity conservation.



60 Chapter 3. Eddies and the General Circulation

3.2.2 The group velocity property (For the keen student)

If the disturbance is composed of plane or almost plane waves then F = cgA,

∂A
∂t

+ ∇ · (Acg) = 0. (3.17)

(
∂
∂t

+ u
∂
∂x

)[
∇2ψ ′ +

∂
∂z

( f 2
0

N2

∂ψ ′

∂z

)]
+ β

∂ψ ′

∂x
= 0. (3.18)

ω = uk − βk
κ2
. (3.19)

with group velocities,

cyg =
2βkl
κ2

, czg =
2βkmf 2

0 /N
2

κ2
, (3.20)

where κ2 = (k2 + l2 +m2f 2
0 /N

2).

ũ = −ikψ̃, ṽ = i l ψ̃ , b̃ = imf0ψ̃, q̃ = −κ2ψ̃. (3.21)

Then

A =
1
2
q′2

β
=
κ4

4β
|ψ̃2| (3.22)

and

F y = −u′v ′ = 1
2
kl |ψ̃2|

F z =
f0
N2
v ′b′ =

f 2
0

2N2
km|ψ̃2|.

(3.23)

Using this in (3.20) and (3.22) gives

F = (F y ,F z) = cgA . (3.24)
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3.3 * THE TRANSFORMED EULERIAN MEAN

∂u
∂t

= f0v −
∂
∂y
u′v ′ + F , (3.25a)

∂b
∂t

= −N2w − ∂
∂y
v ′b′ + J, (3.25b)

Define a mean meridional streamfunction ψm such that

(v,w) =
(
−
∂ψm
∂z

,
∂ψm
∂y

)
. (3.26)

Also define a ‘residual’ streamfunction by

ψ ∗ ≡ ψm +
1

N2
v ′b′, (v

∗
, w

∗
) =
(
−∂ψ

∗

∂z
,
∂ψ ∗

∂y

)
, (3.27)

and

v
∗
= v − ∂

∂z

(
1

N2
v ′b′
)
, w

∗
= w +

∂
∂y

(
1

N2
v ′b′
)
. (3.28)

(3.25a) and (3.25b) become

∂u
∂t

= f0v
∗
+ v ′q′ + F

∂b
∂t

= −N2w
∗
+ J

, (3.29)

where

v ′q′ == − ∂
∂y
u′v ′ +

∂
∂z

(
f0
N2
v ′b′
)
. (3.30)
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3.4 TRANSFORMED EULERIAN MEAN OR TEM

3.4.1 Shallow water (isentropic coordinates)

∂u
∂t

+ u · ∇u − f v = −g∂h
∂x
F (3.31a)

∂h
∂t

+ ∇ · (hu) = J (3.31b)

Zonal average, QG scaling:

∂u
∂t

− f0v = v ′ζ ′ + F (3.32a)

∂h
∂t

+ H
∂v
∂y

= − ∂
∂y
v ′h′ + J [h] (3.32b)

Define

v
∗
= v +

1
H
v ′h′ (3.33)

Then

∂u
∂t

− f0v
∗
= v ′q′ + F

∂h
∂t

+ H
∂v

∗

∂y
= J [h].

(3.1a,b)

where

v ′q′ = v ′ζ ′ −
f0
H
v ′h′. (3.35)

From (3.33) we see that the residual velocity is a measure of the total meridional mass flux, eddy plus mean,
in an isentropic layer.
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We define the mass-weighted mean by

v ∗ ≡
hv

h
(3.36)

so that

v ∗ = v +
1

h
v ′h′, (3.37)

then the zonal average of (3.31b) is just

∂h
∂t

+
∂
∂y

(hv ∗) = J [h], (3.38)

which is the same as (?? ).
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3.5 THE MAINTENANCE OF JETS IN THE ATMOSPHERE
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Fig. 3.1 The time-averaged zonal wind at 150° W (in the mid Pacific) in December-January February
(DFJ, left), March-April-May (MAM, right). The contour interval is 5 m s−1. Note the double jet in
each hemisphere, one in the subtropics and one in midlatitudes. The subtropical jets is associ-
ated with strong meridional temperature gradient, whereas the midlatitude jets have a stronger
barotropic component and are associated with westerly winds at the surface.
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Figure 3.2 Disturbance will bring fluid with
lower absolute vorticity into the cap region,
and the velocity around the latitude line C will
become more westward.

I. The vorticity budget

Basic state vorticity increases monotonically polewards.
Circulation around the cap

I1 =
∫
cap

ωia · dA =
∮
C
uia dl =

∮
C
(ui + 2Ωa cosϑ) dl , (3.39)

Take ui = 0
After the disturbance

If =
∫
cap

ωf a · dA < Ii (3.40)

so that ∮
C
(uf + 2Ωa cosϑ) dl <

∮
C
(ui + 2Ωa cosϑ) dl (3.41)

and
uf < ui (3.42)

with the overbar indicating a zonal average. Thus, there is a tendency to produce westward flow polewards
of the disturbance.
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II. Rossby waves and momentum flux

Fig. 3.3 Generation of zonal flow on a β-plane or on a rotating sphere. Stirring in generates
Rossby waves that propagate away from the disturbance. Momentum converges in the region of
stirring, producing eastward flow there and weaker westward flow on its flanks.
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ψ = ReC ei (kx+ly−ωt) = ReC ei (kx+ly−kct), (3.43)

where C is a constant, with dispersion relation

ω = ck = uk − βk
k2 + l2

≡ ωR. (3.44)

The meridional component of the group velocity is given by

cyg =
∂ω
∂l

=
2βkl

(k2 + l2)2
. (3.45)

Group velocity is directed away from the source region.
Poleward of source: kl > 0 Southwards of the source kl < 0
The velocity variations associated with the Rossby waves are

u′ = −ReCil ei (kx+ly−ωt), v ′ = ReCik ei (kx+ly−ωt), (3.46a,b)

Momentum flux is:

u′v ′ ∝ −1
2
C2kl . (3.47)

Northwards of the source u′v ′ < 0
Southwards of the u′v ′ > 0
That is, the momentum flux associated with the Rossby waves is toward the source region. Momentum

converges in the region of the stirring.



68 Chapter 3. Eddies and the General Circulation

→
↑
x

y

Fig. 3.4 The momentum transport in physical space, caused by the propagation of Rossby waves
away from a source in midlatitudes. The ensuing bow-shaped eddies are responsible for a con-
vergence of momentum, as indicated in the idealization pictured.
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III. The pseudomomentum budget

Zonal momentum equation:
∂u
∂t

+
∂u2

∂x
+
∂uv
∂y

− f v = −∂φ
∂x

+ Fu − Du, (3.48)

Zonal averaging, with v = 0, gives

∂u
∂t

= −∂uv
∂y

+ F u − Du = v ′ζ ′ − ru (3.49)

Barotropic vorticity equation is
∂ζ
∂t

+ u · ∇ζ + vβ = Fζ − Dζ . (3.50)

Linearize
∂ζ ′

∂t
+ u

∂ζ ′

∂x
+ βv ′ = F ′

ζ − D
′
ζ , (3.51)

Multiply (3.51) by ζ ′/β and zonally average to form the pseudomomentum equation,

∂P
∂t

+ v ′ζ ′ =
1
β

(ζ ′F ′
ζ − ζ ′D

′
ζ ), (3.52)

where

P =
1

2β
ζ ′2 (3.53)

is the negative of the pseudomomentum.
If Fζ = Dζ = 0

∂u
∂t

+
∂P
∂t

= 0. (3.54)
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Figure 3.5 Pseudomomentum stirring, which in reality occurs via
baroclinic instability, is confined to midlatitudes. Because of
Rossyby wave propagation away from the source region, the distri-
bution of pseudomomentum dissipation is broader, and the sum
of the two leads to the zonal wind distribution shown, with pos-
itive (eastward) values in the region of the stirring. See also Fig.
3.8.

In general

∂u
∂t

+
∂P
∂t

= −ru +
1
γ

(ζ ′F ′
ζ − ζ ′D

′
ζ ), (3.55)

If steady:

ru =
1
γ

(ζ ′F ′
ζ − ζ ′D

′
ζ ) . (3.56)
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IV. The Eliassen-Palm flux

∂u
∂t

− f0v
∗
= ∇x · F − ru (3.57)

v
∗

is the residual meridional velocity
F is the Eliassen-Palm (EP) flux, that obeys

∂A
∂t

+ ∇ · F = 0,
∂A
∂t

+ ∇ · (Acg) = 0, (3.58)

In the barotropic case v
∗
= 0 and

F = −j u′v ′. (3.59)

EP flux obeys the group velocity property:

F y ≡ j · F ≈ cygA (3.60)

so

∂A
∂t

= − ∂
∂y
cygA =

{
< 0 in stirring region

> 0 in dissipation region
(3.61)

∂u
∂t

= −∂A
∂t

> 0 in stirring region (3.62)
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Fig. 3.6 If a region of fluid on the β-plane or on a rotating sphere is stirred, then Rossby waves
will propagate westwards and away from the disturbance, and this is the direction of propagation
of wave activity density. Thus, there is positive divergence of wave activity in the stirred region,
and using (3.60) and (3.57) this produces a westward acceleration.
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3.5.1 Numerical examples
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Fig. 3.7 The time- and zonally-averaged wind (solid line) obtained by an integration of the
barotropic vorticity equation (?? ) on the sphere. The fluid is stirred in midlatitudes by a ran-
dom wavemaker that is statistically zonally uniform, acting around zonal wavenumber 8, and
that supplies no net momentum. Momentum converges in the stirring region leading to an east-
ward jet with a westward flow to either side, and zero area-weighted spatially integrated velocity.
The dashed line shows the r.m.s. (eddy) velocity created by the stirring.
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Fig. 3.8 The pseudomentum stirring (solid line, F ′
ζ ζ

′), dissipation (dashed line, D′
ζζ

′) and their sum

(dot-dashed), for the same integration as Fig. 3.7. Because Rossby waves propagate away from
the stirred region before breaking, the distribution of dissipation is broader than the forcing,
resulting in an eastward jet where the stirring is centered, with westward flow on either side.
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3.6 THE FERREL CELL
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Fig. 3.9 Two homogeneous layers of mean thickness H1 and H2, local thickness h1 and h2, and
interface η, contained between two flat, rigid surfaces.
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3.6.1 Equations of motion

Zonal average:

∂u1

∂t
− f0v1 = v ′1ζ

′
1 (3.63a)

∂u2

∂t
− f0v2 = v ′2ζ

′
2 − ru2, (3.63b)

Geostrophic balance
f0ug1 = k × ∇φT , f0ug2 = k × ∇φT − g′k × ∇η, (3.64a,b)

Thermal wind:
f0(u1 − u2) = g′k × ∇η , (3.65)

Temperature gradient =⇒ a slope of the interface height.
Interfaces slopes upwards toward lower temperatures

PV qi = ζi + f − f0
hi
Hi

(3.66)

PV Fluxes: v ′iq
′
i = v

′
i ζ

′
i −

f0
Hi
v ′ih

′
i . (3.67)

Residual velocity v
∗
i = v +

v ′ih
′
i

Hi
(3.68)

so that

∂u1

∂t
= v ′1q

′
1 + f0v

∗
1

∂u2

∂t
= v ′2q

′
2 + f0v

∗
2 − ru2

. (3.69)
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H1v
∗
1 + H2v

∗
2 = 0 (3.70)

Mass continuity:
∂hi
∂t

+
∂hivi
∂y

= Si (3.71)

or

∂hi
∂t

+ Hi
∂v

∗
i

∂y
= Si . (3.72)

∂S1

∂y
< 0 v

∗
1 > 0 (3.73)

∂S2

∂y
< 0 v

∗
2 > 0 (3.74)

So mass flux in the upper layer moves polewards!
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Residual Circulation

Radiative

 
Cooling

Radiative
 

Heating

Residual Circulation

Equator Pole

Isentrope

Fig. 3.10 Cooling at high latitudes and heating at low leads steepens the interface upward toward
the pole (thicker arrows). Associated with this there is a net mass flux — the residual flow, or
the meridional overturning circulation (lighter arrows). In the tropics this circulation is accounted
for by the Hadley Cell, and is nearly all in the mean flow. In midlatitudes the circulation — the
residual flow — is largely due to baroclinic eddies, and the smaller Eulerian mean flow is actually
in the opposite sense.

* Manipulations

Interface height:
∂η
∂t

+ ∇ · (ηu1) = S1, or
∂η
∂t

+ ∇ · (ηu2) = −S2 (3.75)

Zonal average

∂η
∂t

− H1

∂v
∗
1

∂y
= S, or

∂η
∂t

+ H2

∂v
∗
2

∂y
= S (3.76)

where S = −S1 = +S2
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Using the thermal wind relationship we have

(v ′1 − v
′
2)η′ = g′∂η

′

∂x
η′ = 0 (3.77)

Hence, if the upper and lower surfaces are both flat, we have that

v ′1h
′
1 = −v ′2h

′
2 (3.78)

Eddy meridional mass fluxes in each layer are equal and opposite.
Eqs. (3.78) and (?? ) are dynamical results, and not just kinematic ones. Form drag on each layer is equal

and opposite.

v ′1η
′ = −[−v ′2η′], (3.79)

PV Flux:

H1v
′
1q

′
1 + H2v

′
2q

′
2 = H1v

′
1ζ

′
1 + H2v

′
2ζ

′
2 = H1

∂
∂y
u′1v

′
1 + H2

∂
∂y
u′2v

′
2, (3.80)

and integrating with respect to y between quiescent latitudes gives

∫ [
H1v

′
1q

′
1 + H2v

′
2q

′
2

]
dy = 0 . (3.81)
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3.6.2 Surface Wind

From (3.69),

rH2u2 = H1v
′
1q

′
1 + H2v

′
2q

′
2 = H1v

′
1ζ

′
1 + H2v

′
2ζ

′
2 (3.82)

using (?? ).

∂q1

∂y
= β −

f0
H1

∂h1

∂y
� 0 (3.83a)

and
∂q2

∂y
= β −

f0
H2

∂h2

∂y
. 0. (3.83b)

Rossby waves will propagate further in the upper layer, and this asymmetry is the key to the production of
surface winds.

I. Rossby waves and the vorticity flux
The stronger potential vorticity gradient of the upper layer is better able to support linear Rossby waves
than the lower layer. Thus, the vorticity flux in the region of Rossby-wave genesis in midlatitudes will be
large and positive in the upper layer, and small and negative in the lower layer.

II. Potential vorticity flux
Now, the pseudomomentum equation for each layer is

∂Pi
∂t

=
∂
∂t

q′2
i

2γi

 = −v ′iq
′
i −

D′
iq

′
i

γi
, i = 1,2. (3.84)

where γi , the potential vorticity gradient, has opposite signs in each layer. In a statistically steady state,
the region of strongest dissipation is the region where the potential vorticity flux is be most negative.
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Fig. 3.11 Sketch of the potential vorticity fluxes in a two-layer model. The surface wind is pro-
portional to their vertical integral. The PV fluxes are negative (positive) in the upper (lower) layer,
but are more uniformly distributed at upper levels. The lower panel shows the net (vertically
integrated) PV fluxes, and the associated surface winds.
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Phenomenology of a Two-layer Mid-latitude Atmosphere: a Summary

Potential vorticity gradients in each layer are given by

∂q1

∂y
= β −

f0
H1

∂h1

∂y
> 0 and

∂q2

∂y
= β −

f0
H2

∂h2

∂y
. 0. (TL.1)

The gradient is large and positive in upper layer and small and negative in the lower layer — the gradient
must change sign if there is to be baroclinic instability which we assume to be the case.

∂u1

∂t
= f0v1 + v

′
1ζ

′
1 = f0v

∗
1 + v

′
1q

′
1 (TL.2a)

∂u2

∂t
= f0v2 + v

′
2ζ

′
2 − ru2 = f0v

∗
2 + v

′
2q

′
2 − ru2 (TL.2b)

In steady state the potential vorticity flux will be equatorward in the upper layer and poleward in the lower
layer.

rH1u1 = H1v
′
1q

′
1 + H2v

′
2q

′
2 = H1v

′
1ζ

′
1 + H2v

′
2ζ

′
2 (TL.3)

Because the potential vorticity gradient in the upper layer is large, this layer is more linear than the lower
layer and Rossby waves are better able to transport momentum. The vorticity flux is thus stronger in the
upper layer than the lower and, using (TL.3), the surface winds are positive (eastward) in the mid-latitude
baroclinic zone (see Fig. 3.12).
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Fig. 3.12 Schema of the eddy fluxes in a two-layer model of an atmosphere with a single mid-
latitude baroclinic zone. The upper layer fluxes are solid lines, the lower layer fluxes are dashed.
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Momentum balance and the overturning circulation

In the upper layer the balance is between the vorticity flux and the Coriolis term, namely

f0v1 = −v ′1ζ
′
1 < 0. (3.85)

In lower layer

ru2 ≈ f0v2 = −
H1

H2

f0v1 > 0. (3.86a,b)

where the second inequality follows by mass conservation of the Eulerian flow.
In terms of the TEM form of the equations, (3.69), the corresponding balances in the center of the domain

are:
f0v

∗
1 = −v ′1q

′
1 > 0, (3.87a)

and

ru2 = f0v
∗
2 + v

′
2q

′
2 = −f0

H1

H2

v
∗
1 + v

′
2q

′
2 =

H1

H2

v ′1q
′
1 + v ′2q

′
2 > 0, (3.87b)

using mass conservation. An example of the dynamical balances of the two-layer model is given in Fig. 3.12)
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3.7 THE ANTACTIC CIRCUMPOLAR CHANNEL
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Fig. 3.13 Schema of the major currents in the Southern Ocean. Shown are the South Atlantic
subtropic gyre, and the two main cores of the ACC, associated with the Polar front and the
sub-Antarctic front.1
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(a) (b)

Fig. 3.14 The zonally-averaged temperature field in numerical solutions of the primitive equa-
tions in a domain similar to that of Fig. ?? (except that here the channel and sill are nestled
against the polewards boundary). Panel (a) shows the steady solution of a diffusive model with
no baroclinic eddies, and (b) shows the time-averaged solution in a higher resolution model that
allows baroclinic eddies to develop. The dotted lines show the channel boundaries and the sill.2
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3.7.1 Vertically integrated momentum balance

f × u = −∇φ +
∂ τ̃
∂z
, (3.88)

where τ̃ is the kinematic stress (and henceforth we drop the tilde). Integrating over depth

f × û = −∇φ̂ −φb∇ηb + τw − τf , (3.89)

The x-component

f v̂ = −∂φ̂
∂x

−φb

∂ηb
∂x

+ τxw − τxf , (3.90)

Zonal average: ∮
[φb

∂ηb
∂x

+ τxw − τxf ] dx = 0. (3.91)

Form drag dominates at the bottom.
The vorticity balance - take curl of (3.89)

βv̂ = k · ∇φb × ∇ηb + curlzτw − curlzτf . (3.92)

After zonal average βv ≈ 0. Sverdrup balance cannot hold on average!
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Fig. 3.15 Eddy fluxes and form drag. Cold (less buoyant) water flows equatorwards and warm
water polewards, so that v ′b′ < 0. The pressure field associated with this flow (dashed lines)
provides a form-drag on the successive layers, Fp, shown. At the ocean bottom the westward
form drag on the fluid arising through its interaction with the orography of the sea-floor is equal
and opposite to that of the eastward wind-stress at the top. The mass fluxes in each layer are
given by v ′h′ ≈ −∂z(v ′b′/N

2).
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3.7.2 Form drag and baroclinic eddies

Form drag:

τi = −ηi
∂pi
∂x

= −ρ0f ηivi (3.93)

Zonally-averaged meridional transport in each layer by

Vi =
∫ ηi−1

ηi

ρ0v dz (3.94)

Momentum balance in fluid layers:

−f V 1 = τw − τ1 = η1

∂p1

∂x
+ τw , (3.95a)

−f V i = τxi−1 − τi = −ηi−1

∂pi−1

∂x
+ ηi

∂pi
∂x

, (3.95b)

−f V N = τN−1 − τN = −ηN−1

∂pN−1

∂x
+ ηb

∂pb
∂x

− τf , (3.95c)

The vertically integrated meridional mass transport must vanish, and thus summing over all the layers
(3.95) becomes

0 = τw − τf − τN (3.96)

or, noting that τN = −ηb∂pb/∂x,

τw = τf − ηb
∂pb
∂x

. (3.97)
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Momentum dynamics in height coordinates

− f0v
∗
= ∇m · F +

∂τ
∂z

(3.98)

∇m · F = − ∂
∂y
u′v ′ +

∂
∂z

(
f0
N2
v ′b′
)
= v ′q′. (3.99)

Potential vorticity flux scales as

∂
∂y
u′v ′ ∼ v ′2

Le
,

∂
∂z

(
f0
v ′b′

bz

)
∼ v ′2

Ld
(3.100)

where Le is the scale of the eddies and Ld is the deformation radius.
So that

−f0v
∗ ≈ ∂τ

∂z
+
∂
∂z

(
f0
v ′b′

bz

)
. (3.101)

and

τw = τf −
[
f0
v ′b′

bz

]0

−H

, (3.102)

Mass fluxes and thermodynamics

Eulerian
f0va = τ (3.103)

TEM Thermodynamic:
∂b
∂t

+ J(ψ ∗, b) = Q[b] (3.104)

where J(ψ ∗, b) = (∂yψ
∗)(∂zb) − (∂zψ

∗)(∂yb) = v
∗
∂yb + w

∗
∂zb, ψ ∗ is the streamfunction of the residual flow

and Q[b] represents heating and cooling, which occurs mainly at the surface.
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Fig. 3.16 A schema of the meridional flow in an eddying channel. The eddying flow may be
organized (for example by baroclinic instability) such that, even though at any given level the
Eulerian meridional flow may be small, there is a net flow in a given isopycnal layer. The residual
(v

∗
) and Eulerian (v) flows are related by v

∗
= v + v ′h′/h; thus, the thickness-weighted average

of the eddying flow on the left gives rise to the residual flow on the right, where ηi denotes the
mean elevation of the isopycnal ηi .

Adiabatic:
J(ψ ∗, b) = 0, (3.105)

Therefore ψ ∗ = G(b)
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Latitude                        Latitude                      Latitude
←to pole

Fig. 3.17 The meridional circulation in the re-entrant channel of an idealized, eddying numerical
model of the ACC (as in Fig. 3.14, but showing only the region south of 40° S). Left panel, the
zonally averaged Eulerian circulation. Middle panel, the eddy induced circulation. Right panel, the
residual circulation. Solid lines represent a clockwise circulation and dashed lines, anticlockwise.
The faint dotted lines are the mean isopycnals. Over much of the channel the model ocean
is losing buoyancy (heat) to the atmosphere and so the net, or residual, flow at the surface is
polewards.
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