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Lecture 1: Review of geophysical fluid dynamics
- Basic equations

Mass
Momentum
Thermodynamics
Vorticity
Streamfunction

- Approximations
Anelastic
Hydrostatic and traditional approximation
Geostrophic

- Ertel’s theorem
- Barotropic vorticity equation
- Layer models
- Geostrophic adjustment
- Quasi-geostrophic approximation

Examples

1 —Basic equations

I’ll generally work with the adiabatic, inviscid equations and only introduced non-
conservative terms as needed.

1.1 — Mass

The conservation of mass really defines u as the mass-weighted velocity of collection
of molecules so that the flux is just uρ. Then

∂

∂t
ρ+∇ · (ρu) = 0 or

1

ρ

D

Dt
ρ+∇ · u = 0 (1.1)

with the Lagrangian (material) derivative defined as

D

Dt
=

∂

∂t
+ u · ∇

1.2 — Momentum

∂

∂t
u + (2Ω + ζ)× u = −1

ρ
∇p−∇1

2
|u|2 −∇Φ (1.2)

with the vorticity ζ being
ζ = ∇× u (1.3)

The gravitational (including centrifugal) potential is Φ and the planet’s rotation vector is
Ω.

Often I’ll use the Lagrangian derivative notation for velocities, but it really means

D

Dt
u =

∂

∂t
u + ζ× u +

1

2
|u2|

in that context; in a non-Cartesian system, you need to worry about accelerations associ-
ated with changes in direction of the basis vectors.

3



1.3 — Thermodynamics

For adiabatic processes, the thermodynamics is most easily represented as the con-
servation of entropy η. If we think of the equation of state as specifying the density as a
function of entropy and pressure (and salinity), we have the simple expression

D

Dt
ρ =

∂ρ(η, p, S)

∂p

D

Dt
p =

1

c2s

D

Dt
p (1.4)

with cs(p, ρ) being the speed of sound. For an ideal gas, c2s = γRT = γp/ρ; in general, it’s

c2s =

[
ρp −

Tρ2T
cpρ2

]−1
for ρ expressed in terms of the usual variables, T , S, p. For problems with non-conservative
terms, it is more convenient to regard the enthalpy (internal energy+p/rho) as a primary
variable. The thermodynamic quantities can be best summarized in terms of derivatives
of the Gibb’s function (internal energy+p/ρ− Tη)

1.4 — Vorticity

The absolute vorticity ζa = 2Ω + ζ evolves according to

∂

∂t
ζa +∇× (ζa × u) =

1

ρ2
∇ρ×∇p (1.5)

(often written in the Cartesian form

∂

∂t
ζa + (u · ∇)ζa − (ζa · ∇)u + ζa(∇ · u) =

1

ρ2
∇ρ×∇p

to bring out the vorticity generation processes: stretching, tilting, and baroclinic). Our
primary interest is in the local vertical component, so we shall instead dot 1.xx with ẑ to
get an equation for the local vertical absolute vorticity ζa = ẑ · ζa = ζ + f .

∂

∂t
ζa +∇ · (uζa) = ζa · ∇w +

1

ρ2
ẑ · (∇ρ×∇p) (vort)

The r.h.s. has stretching terms from the vertical component of ζa, tilting terms from the
horizontal components, and baroclinic generation.

To understand the meaning of the vorticity, consider the motion of a small line segment
δx extending from x(t) to x(t) + δx(t). At time t+ δt, we find

x(t+ δt) = x(t) + u(x(t), t)δt

x(t+ δt) + δx(t+ δt) = x(t) + δx(t) + u(x(t) + δx(t), t)δt

or
δx(t+ δt) = δx(t) + u(x(t) + δx(t), t)δt− u(x(t), t)δt
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so that
d

dt
δxi =

∂ui
∂xj

δxj

The nine-component rate-of-strain tensor can be split into symmetric and antisymmetric
parts:

∂ui
∂xj

=
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
+

1

2

[
∂ui
∂xj
− ∂uj
∂xi

]
We can write the antisymmetric part in matrix form as

1

2

[
∂ui
∂xj
− ∂uj
∂xi

]
=

1

2

 0 −ζz ζy
ζz 0 −ζx
−ζy ζx 0


But this is isomorphic to a rotation matrix: the product of this with a displacement vector
takes the form  0 −ζz ζy

ζz 0 −ζx
−ζy ζx 0

 δx
δy
δz

 = ζ× δx

Thus, the antisymmetric part of the rate-of-strain tensor contributes

d

dt
δx =

1

2
ζ× δx + symm

⇒ Vorticity causes line elements in the flow to rotate, with the vorticity vector being twice
the local rate of rotation vector.

example movement divergence strain rotation strain+rotation
The symmetric part of the rate-of-strain tensor stretches or shrinks line elements,

corresponding to divergence — expansion of a volume element — and pure strain —
expanding along one axis and contracting correspondingly along the other two (or vice-
versa).

The rotation of the planet, Ω, ensures that the absolute vorticity ζa = 2Ω + ζ is
generally non-zero: geophysical flows are inherently rotational.

1.5 — Streamfunction

We shall at times use the streamfunction and velocity potential; these decompose the
flow into its irrotational and rotational parts

u = −∇ϕ−∇× ~ψ

which implies
∇2ϕ = −∇ · u

and
∇2 ~ψ = ∇× u

(if we choose ∇ · ~ψ = 0). Thus we can find the velocity potential and the streamfunction
if we know the divergence and the vorticity.
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2 —Approximations

2.1 — Anelastic

Our first simplification filters out sound waves. We let

ρ =
ρ(p)

1 + τ

where ρ(p) corresponds to an isentropic, hydrostatic state

∇p = −ρ∇Φ

Think of τ as acting like the Boussinesq αT . The pressure and gravity terms on the
momentum equation become

1

ρ
∇p+∇Φ = (1 + τ)∇

∫ p dp′

ρ(p′)
+∇Φ = ∇φ− τ∇Φ + τ∇φ (2.1)

where we have removed the isentropic, hydrostatic balance∫ p dp′

ρ(p′)
= −Φ + φ (2.2)

We approximate by dropping the last term in (2.xx) giving momentum equations

∂

∂t
u + (2Ω + ζ)× u = −∇φ−∇1

2
|u|2 + τ∇Φ (2.3)

in which the buoyancy τ∇Φ appears naturally.
We drop the τ term in the mass equation

D

Dt
ln ρ+∇ · u =

D

Dt
ln ρ− D

Dt
ln(1 + τ) +∇ · u = 0 → ∇ · ρu = 0 (2.4)

From the definition of φ, the thermodynamic equation

D

Dt
p = c2s

D

Dt
ρ

becomes

D

Dt
φ− u∇̇Φ = c2s

1

ρ
ρ
D

Dt
ln ρ = c2s(ρ/(1 + τ), p)

1

1 + τ

(
1

ρ
u · ∇ρ− 1

1 + τ

D

Dt
τ

)
We use

u · ∇ρ =
1

c2s(ρ, p)
u · ∇p = − ρ

c2s(ρ, p)
u · ∇Φ
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and drop the τ ’s compared to 1 to arrive at

D

Dt
τ = − 1

c2s

D

Dt
φ

Taking small Mach number again yields

D

Dt
τ = 0 (2.5)

We collect (2.3,4,5) as our equation set

∂

∂t
u + (2Ω + ζ)× u = −∇φ−∇1

2
|u|2 + τ∇Φ

∇ · ρu = 0

D

Dt
τ = 0

(Anelastic)

Note that, with no-flux or periodic boundary conditions, these equations conserve energy

∂

∂t

∫
dx

(
1

2
ρ|u|2 + ρτΦ

)
= 0

Note on τ : if we think of ρ as a function of potential temperature θ, salinity S, and
pressure p, we have

τ =
ρ(θ0, S0, p)− ρ(θ, S, p)

ρ(θ, S, p)

with θ′ = θ − θ0 and S′ = S − S0 being conserved. For an ideal gas, η = cp ln θ =
cv ln p− cp ln ρ and ρ = Kpcv/cp/θ. The equation above simplifies to

τ =
1/θ − 1θ0

1/θ
=
θ − θ0
θ0

=
θ′

θ0

Thus τ is conserved and is a surrogate for entropy. In the more general case, we can expand
to find

τ ' αθ′ − βS′ with α = − ∂

∂θ
ln ρ , β =

∂

∂S
ln ρ

evaluated at θ0, S0. In the Boussinesq approximation, these are taken to be constant so
τ is again conserved. But in general, they will be functions of pressure so that you get
extra terms in the thermodynamic equation, related to the p derivatives of the expansion
coefficients. The baroclinic term in the PV derivation

∇η · ∇ × τΦ = ∇η · (∇τ ×∇Φ)

vanishes when we can use τ as the conserved property in place of η but not otherwise.
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2.2 — Hydrostatic and traditional approximation

For most of the lectures, I’ll use the hydrostatic approximation, appropriate for sys-
tems with the horizontal scale large compared to the vertical scale. However, it may not
be apply to deep atmospheres on the gas giants.

Central to the approximation is that the vertical velocity w is order H/L compared
to the horizontal velocities uh based on the mass equation. The horizontal vorticities
are dominated by the vertical shear of the horizontal velocities. E.g., in Cartesian form
wx ∼ UH/L2 and is order H2/L2 compared to the other term uz ∼ U/H. In spherical
coordinates, we also assume L is less than or order of the planetary radius a. The horizontal
equations become

∂

∂t
uh + (f + ζh)× u = −∇φ−∇1

2
|uh|2

with ζh = ∇× uh. The w term still appears since w ∂
∂zu is similar in order to u ∂

∂xu. Note
that we have dropped the w terms from 2Ω×u; to be energetically consistent, we also drop
the Coriolis term in the vertical momentum equation. Thus we replace 2Ω by 2(Ω · ẑ)ẑ = f
with f = f ẑ and the Coriolis parameter, f , being f = 2Ω sin θ.

The vertical momentum equation has terms of the order listed

D

Dt
w − 2Ω cos θu = − ∂

∂z
φ+ gτ

U

L

UH

L
fU

U2

H
,
fUL

H
?

H2

L2

H/L

Ro
1 τ ∼ U2/gH

Ro
H2

L2

H

L
1 τ ∼ fUL/gH

where we have listed two possible scalings for φ and the implications for the ratio. The
Rossby number Ro = U/fL measures the importance of the inertia to the Coriolis force,
or, alternatively, the size of an inertial circle† compared to the scale of the motion. In each
case the acceleration is down by a factor of at least H2/L2. As mentioned, we need to
drop the Coriolis term; that works out if H/L << Ro. That’s OK, since the U2 pressure
scaling is appropriate for ro order 1 while the fUL applies for small Ro.

The three momentum equations now take the form

∂

∂t
uh + (f + ζh)× u = −∇φ−∇1

2
|uh|2 + τ∇Φ (hydrostat)

The other part of the traditional approximation involves writing r = a + z and dropping
all H/a terms; this means terms like longitudinal derivatives

1

r cos θ

∂

∂λ
→ 1

a cos θ

∂

∂λ

† ∂2

∂t2 u + f2u = 0 ⇒ u = U cos(ft) ⇒ X = U
f sin ft
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or the vertical derivatives in the mass equation

1

r2
∂

∂r
r2ρw → ∂

∂z
ρw

change slightly.

2.3 — Geostrophic

Pressure and flow
The geostrophic approximation starts with the assumption that the time scale 1s the

advective time. The horizontal momentum equations scale like

∂

∂t
uh + (f + ζh)× u = −∇φ−∇1

2
|uh|2

U2/L fU U2/L ? U2/L

Ro 1 Ro 1 Ro

If f >> U/L, we indeed need to scale the pressure by fUL, and the ratios become of the
order in the third line above. For small Rossby number, we find

uh =
1

f
ẑ×∇φ

This is generally coupled with the hydrostatic equation, giving the thermal wind balance

f
∂

∂z
uh = ẑ×∇∂φ

∂z
= gẑ×∇τ

Note: we can solve for the balanced condition in general for a spherical planet with
purely zonal flow u = u(r, θ); we find the equivalent of the cyclo-geostrophic equation

2Ω
d

dz
ρu+

1

r cos θ

d

dz
ρu2 =

g(r)

r

∂ρ

∂θ

with
d

dz
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ

The shears related to the density gradients are along the axis of rotation, not the vertical
direction and, for the Coriolis term, involve the momentum rather than the velocity.

While these approximations simplify the dynamics by filtering out various kinds of
motion, they imply that some fields are only known diagnostically: in particular, the
geostrophic and hydrostatic equation relates the velocities and buoyancy to the pressure,
but does not predict the evolution.
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3 —Ertel’s theorem

For the anelastic, hydrostatic system, the potential vorticity

q =
1

ρ
ζa · ∇τ

(with ζa = ζh + f) is conserved, D
Dtq = 0.† Physically, this follows from conservation

of circulation around a cylinder embedded between two adjacent τ surfaces with fixed
difference δτ .

C =

∮
ζa · d` = Aζa · n̂ = Aζa · ∇τ

1

|∇τ |

with the mass being

M = ρA
δτ

|∇τ |

Conservation of C/M leads to Ertel’s theorem.
Proof: uses the following vector identities:

• ∇τ · ∇ × a = ∇ · (a×∇τ)

• (a× b)× c = b(c · a)− a(b · c)

• ∇ · (au) = u · ∇a+ a∇ · u
• ∇ · ζa = ∇ · (∇× uh + f) = 0

[no need to introduce things like (ζa · ∇)u ].

∂

∂t
q =

1

ρ
∇τ · ∂

∂t
ζa +

1

ρ
ζa · ∇

∂τ

∂t

= −1

ρ
∇τ · (∇× [ζa × u]) +

1

ρ
∇τ · ∇ × gτ ẑ− 1

ρ
ζa · ∇(u · ∇τ)

= −1

ρ
∇ · (ρuq) +

1

ρ
∇ · [ζa(u · ∇τ)]− 1

ρ
∇ · [ζa(u · ∇τ)] +

1

ρ
∇τ · ∇ × gτ ẑ

= −1

ρ
∇ · (ρuq) +

1

ρ
∇τ · ∇ × gτ ẑ

= −u · ∇q − 1

ρ
∇τ · (ẑ×∇gτ)

The last term is zero since g depends only on z. In the full Navier-Stokes equations, we
require

∇η · (∇p×∇ρ) = 0

with η the entropy; this is true for ρ = ρ(η, p) but will not hold exactly when salinity is
considered.

† We’ll use “PV” for potential vorticity.
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4 —Barotropic vorticity equation

We can learn a lot about vortex and jet dynamics by studying the barotropic vorticity
equation. Consider an isentropic fluid so that τ = 0. We also drop the ρ term, consistent
with very large c2s.

∇ · u = 0

(If we think of this as dropping the D
Dt ln ρ in the mass equation, we cannot turn around

and say ∇ · u = 0 so D
Dtρ = 0.) We can also take w = 0 and ∂

∂zuh = 0 if we use
the hydrostatic/traditional approximation: the horizontal vorticity is then zero and stays
zero.

Since the velocity potential will be zero,

uh = −∇× ψẑ = ẑ×∇ψ , ζ = ∇2ψ

and the vertical vorticity equation reduces to the conservation of “potential vorticity”
(PV)

∂

∂t
q + [ψ, q] = 0

q = ζ + f

or

∇2ψ = q − f

(BTV E)

with [A,B] = ẑ · (∇A × ∇B) often written as J(A,B). This equation embodies a fun-
damental approach to GFD: it has a conserved scalar q which can be inverted to find the
flow ψ. We can write the inversion formula in terms of the Green’s function

ψ(x) =

∫
dx′G(x− x′)

(
q(x′)− f(x′)

)
, ∇2G = δ(x− x′) (BT − inv)
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5 —Layer models

For stratified problems, we will use the two-layer model (Phillips, 1951): in order to
study baroclinic processes, we need at least two degrees of freedom in the vertical. The
traditional derivation deals with two layers of constant density, light fluid on top of a
constant density, heavier layer. For atmospheres, however, we shall work instead with
the assumption that we have a isentropic buoyant layer τ = g′/g overlaying the deeper
isentropic layer.

τ =
g′

g
H(r + h)

This leads to
φ1 = φ′1 + g′(r − a) , φ2 = φ′2

giving
φ′1 = φ′2 + g′h at r = a− h

If the upper layer is hydrostatic, then the horizontal gradients are just

∇φ′1 = ∇
(
φ′2(xh, a− h) + g′h(xh)

)
and, if deep layer is still thin enough that it also is hydrostatic, we just have

∂

∂t
u1 + (f + ζ)ẑ× u1 = −∇

(
φ′2 + g′h+

1

2
u2
1

)
∂

∂t
u2 + (f + ζ)ẑ× u2 = −∇

(
φ′2 +

1

2
u2
2

)
for the horizontal momentum equations. Again, it is consistent for the horizontal vorticity
to vanish, so that u1 and u2 are horizontal.

Using ∂
∂zuh = 0 and the fact that z = −h is a material surface enables the integration

of the mass equation (∫ 0

−h
ρ

)
∇ · u1 + ρ(−h)

d

dt
h = 0

to be written as
D

Dt
ln

∫ 0

−h
ρ+∇ · u1 = 0

or
∂

∂t
M +∇ ·Mu1 = 0 , M =

∫ 0

−h
ρ
/∫ 0

−H
ρ

yielding

g′∇h =

(
g′H

1
H

∫ 0

−H ρ

ρ(−h)

)
M = g′′M

with H the mean thickness of the layer.
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Our upper layer equations are

∂

∂t
u1 + (f + ζ)ẑ× u1 = −∇

(
φ′2 + g′′M +

1

2
u2
1

)
∂

∂t
M +∇ ·Mu1 = 0

For a lower layer with total mass of both layers M

∂

∂t
u2 + (f + ζ)ẑ× u2 = −∇

(
φ′2 +

1

2
u2
2

)
− ∂

∂t
M +∇ · (M−M)u2 = 0

We will now shift back to the standard notation (g′′,M,M, φ′2 → g′, h,H, φ2).

∂

∂t
u1 + (f + ζ)ẑ× u1 = −∇

(
φ2 + g′h+

1

2
u2
1

)
∂

∂t
h+∇ · hu1 = 0

∂

∂t
u2 + (f + ζ)ẑ× u2 = −∇

(
φ2 +

1

2
u2
2

)
− ∂

∂t
h+∇ · (H − h)u2 = 0

(two− layermodel)

The rigid lid and bottom assumption involves neglecting ∂
∂tH; since we’ve lost a predictive

equation, we must treat the pressure φ2 as a diagnostic variable (i.e., if we multiply the
first eqn. by h and the third by H−h, and take the divergences, we eliminate the ∂

∂t to get
a Poisson equation for pressure. A similar problem occurs in the anelastic and Boussinesq
eqns — the pressure adjusts to that required to maintain non-divergence. If we retain
the changes in elevation of the free-surface, we eliminate that problem but then have fast
surface gravity waves which can lead to numerical problems.
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6 —Geostrophic adjustment

One example which illustrates the importance of PV in the slow evolution of eddies
and jets is the geostrophic adjustment problem (Rossby, 1938). one-d adjustment

two-d adjustment . We consider solving the linear upper layer SW equation (with
φ2 = 0) starting from an initial uh and h = H + φ/g′ in vorticity-divergence form. The
evolution of the vorticity ζ = ∇2ψ and the divergence D = −∇2ϕ

∂

∂t
ζ +∇ · (fu) = 0 ⇒ ∂

∂t
ζ + fD + βv = 0

∂

∂t
D +∇ · (ẑ× fu) = −∇2φ ⇒ ∂

∂t
D − fζ + βu = −∇2φ

couples with the mass equation
∂

∂t
φ+ g′HD = 0

These are correct for the sphere (f = 2Ω sin θ, β = 2Ω cos θ/a) or the beta plane (f =
f0 + βy). Eliminating D gives

∂

∂t
Q+ βv = 0

Q = ζ − fφ

g′H

− 1

gHe

∂2

∂t2
φ+∇2φ− f2

g′H
φ+ βu = fQ

In the absence of β, this equation has zero-frequency solutions

∂

∂t
Q = 0 ,

(
∇2 − f2

g′H

)
φpar = fQ

These will be geostrophic and non-divergent. The time-dependent part comes from the
homogeneous terms (

∂2

∂t2
+ f2 − g′H∇2

)
φhom = 0

and represents the gravity waves with characteristic super-inertial frequencies ω2 = f2 +
g′HK2. In the presence of β, the zero-frequency waves become Rossby waves, and we
can approximate their solution by neglecting ϕ and replacing the divergence equation
∇ · f∇ψ = ∇2φ by φ = fψ to give

∂

∂t
Q+ β

∂

∂x
ψ = 0 , Q = ∇2ψ − f2

g′H
ψ

with sub-inertial frequencies ω = −βk/(K2 +γ2) with γ2 = f20 /g
′H. The Rossby deforma-

tion radius Rd = 1/γ =
√
g′H/f0 gives the length over which the PV anomalies “generate”

significant velocities.
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Thus we see that the slow modes are associated with PV anomalies and β while the fast
gravity waves have no PV signal (except, again, for β-effects). In the nonlinear problem, the
slow modes, even on the f -plane will evolve by advection of PV. The decomposition is not,
however, rigorous: as Ford, et al. (2000) have shown, balanced vortices can be unstable and
radiate long gravity waves or generate gravity modes via non-linear interactions between
balanced modes (c.f. Remmel and Smith, 2009).

We note that the hydrostatic, fully stratified, linear problem can be separated; in that
case the horizontal equation is the same but g′H → gHe where the equivalent depth He is
an eigenvalue of the vertical structure equation

1

ρ

∂

∂z

ρ

N2

∂

∂z
F = − 1

gHe
F

Likewise for the two-layer model, the baroclinic mode has an “equivalent depth” gHe =
g′H1H2/(H1 +H2).

7 —Quasi-geostrophic approximation

Traditionally, the QG approximation is done by a Rossby number expansion of the
equations. We’re going to work from the layer version of Ertel’s theorem. Conservation of
potential vorticity here implies

D

Dt
q = 0 , q =

ζ + f

h
(7.1)

This comes from the vorticity equation

∂

∂t
ζa +∇ · (uζa) = 0 , ζa = f + ζ

or
∂

∂t
qh+∇ · (uqh) = 0

Combining this with the mass equation leads to the conservation statement (7.1). We
define

h =
H

1− (η/H)
or

η

H
=
h−H
h

Then the conserved property Q=Hq has the form

Q = f + ζ − f η
H
− ζ η

H

For QG, we approximate this by

• dropping the last term (order Rossby number)

Q ' f +∇2ψ − f η
H

15



• noting that the divergent flow is order Ro: geostrophy implues η ∼ fUL/g′ so that
the terms in the mass equation

1

h

D

Dt
h+∇ · uh = 0 or − h D

Dt

1

h
+∇ · uh = 0

have sizes
1

H − η
D

Dt
η +∇ · uh = 0

fU2/g′H ϕ/L2

and ϕ ∼ ULRoF whereas ψ ∼ UL. The η/H term can be dropped compared to 1
under the choice that H is the mean thickness; deviations are small (η/H ∼ RoF ).

• Advection simplifies to
∂

∂t
Q+ [ψ,Q] = 0

with [A,B] = ẑ · (∇A×∇B).

• Finally, we need to relate η to the streamfunction; geostrophy again gives

g′η = fψ

in the single layer case or
g′η = f(ψ1 − ψ2)

in the two layer problem.

∂

∂t
Q+ [ψ,Q] = 0

Q = ∇2ψ − f2

g′H
ψ + f (QG)

or

Q1 = ∇2ψ1 −
f2

g′H1
(ψ1 − ψ2) + f , Q2 = ∇2ψ2 −

f2

g′H2
(ψ2 − ψ1) + f

with the first equations applying in each layer. We’ll use several shorthands: Fi = f2/g′Hi

or γ2 = f2(H1+H2)/g′H1H2, f2/gH1 = γ2/(1+δ), f2/gH2 = δγ2/(1+δ) with δ = H1/H2.
We have chosen this approach, because a parallel version can be used in the stratified

case (lecture 5) and it illustrates the connections between Ertel PV and QGPV.
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7.1 — Examples

Many of the processes in these examples are familiar in the barotropic context; how-
ever, we shall discuss instead an upper layer problem (δ → 0)

∂

∂t
q + [ψ, q] = 0 with q = ∇2ψ − γ2ψ + T (x) (7.2)

with γ2 = f2/gH1. Here T would be γ2ψ2 + f − f0 but could also represent topography.
The assumption is that the deep field is steady (and could be zero). The deformation
radius Rd = 1/γ and γ → 0 for the BTVE.

Consider first dynamics on an “f -plane” meaning the scales are small enough that
βL/f is much less than other parameters (including the desired time scales in the form
1/f t̃). Then T = f0 and

q → Q ,
∂

∂t
Q+ [ψ,Q] = 0 , Lψ = Q

For the BTVE, L = ∇2; for (7.2), L = ∇2 − γ2; we can work with

ψ(x) =

∫
dx′G(x− x′)Q(x′)

and just specialize the Green’s function when needed.

[BTV E] G =
1

2π
ln(|x− x′) , [EBT ] G = − 1

2π
K0(γr)

Point vortices: Q = qiδ
(
x− xi(t)

)
[summation convention]. For these

ψ(x) = qiG(x− x′i)

The dynamics becomes

−qi
∂xi
∂t
· ∇δ(x− xi) + qiu · ∇δ(x− xi) = 0

implying
∂

∂t
xi = u(xi) = ẑ×∇ψ

∣∣
xi

= qj ẑ×∇iG(xi − xj)

bt exchange merger ebt ebt 1.7 ebt merger
In this calculation, the self-advection term from j = i is dropped. We can justify this

by considering desingularized vortices (with compact support) Q =
∑
Qi(x). We assume

the vortices are small and widely-separated so we can define an area Di covering each
vortex. Then

∂

∂t

∫
Di

Qi = −
∮
∂Di

u · n̂Qi = 0
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If we now examine the center of mass of the ith vortex

Xi =

∫
Di
xQi∫

Di
Qi

we have (∫
Di

Qi

)
∂

∂t
Xi = −

∫
Di

x[Q,ψ]

= −
∮
∂Di

xu · n̂Q+

∫
Di

uQ

=

∫
Di

uQi

where we have chosen the boundary of Di to be outside the patch. Likewise(∫
Di

Qi

)
∂

∂t
Yi =

∫
Di

vQi

But the part of u and v deriving from Qi (i.e., from ψi =
∫
GQi) will have disappear from

the advection terms; e.g.∫
Di

viQi =

∫∫
Qi(x)

∂

∂x
G(x− x′)Qi(x

′)

will be zero, since the derivative makes the kernel antisymmetric. If the other vortices are
separated sufficiently,

ψj =

∫
G(x− x′)Qj(x

′) ' G(x−Xj)

∫
Qj

and the patch motion agrees with the point vortex model. We will consider the corrections
associated with f(y) later.

Patch of vorticity: for a nearly circular patch with area πb2

Q = q0H(b+ η − r)

For η = 0 and L = ∇2, we have the Rankine vortex with

v(r) =
∂ψ

∂r
=

{ 1
2q0r r < b
1
2q0

b2

r r > b

bt ellipse ebt precession strain weak strain counter shear
shear steady
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We can understand how the perturbed vortex will evolve by noting that the boundary
r = b+ η is a material surface

∂

∂t
η = − 1

b+ η

d

dθ
ψ(b+ η(θ, t), θ)

We can think in terms of anomalies associated with the contour displacements η and how
they, in conjunction with the flow around the vortex, move the anomalies. Let

Lψ = q0H(b− r) , Lψ′ = q0H(b+ η − r)− q0H(b− r)

with the latter linearizing to
Lψ′ = q0η δ(b− r)

We also linearize the dynamical equation

∂

∂t
η = −1

b

∂ψ

∂r

∂η

∂θ
− 1

b

∂ψ′

∂θ
= −v(b)

b

∂η

∂θ
− 1

b

∂ψ′

∂θ

For steadily propagating vortex waves, η(θ, t) = η(θ − ct) and

v(b)

b
η +

1

b
ψ′ = cη

This will happen if η is a pure mode η = η0 exp(ınθ); then

ψ′ = ψ′(r)eınθ , ψ′(r) = q0Gn(r|b)η0

with Gn the Green’s function associated with Ln – the radial part of L when ∂
∂θ → ın.

The waves propagate at

c =
v(b)

b
+
q0
b
Gn(b|b)

Taking an r derivative of the ψ equation gives

L1v = −q0δ(b− r) ⇒ v(b) = −q0G1(b|b)

and
c =

q0
b

(
Gn(b|b)−G1(b|b)

)
The Green’s function takes the form

G(r|r′) =
1

W (G+, G−)

{
G−(r)G+(r′) r < r′

G−(r′)G+(r) r′ < r
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with the two solutions of LnG± = 0 satisfying regularity at the origin for G− and at
infinity for G+. For the BTVE,

Gn(r|r′) = − r′

2n


( r
r′

)n
r < r′(

r′

r

)n
r > r′

(G−BT )

and

c = q0[
1

2
− 1

2n
]

=
v(b)

b
[1− 1

n
]

The n = 1 mode does not precess; it simply represents a displacement of the vortex. The
higher modes precess, but at a rate slower than the vortex itself rotates at the boundary.
Indeed, the first term gives a precession at the rate of the particles on the boundary, while
the second term represents a retrograde propagation from the wave effects, a propagation
which weakens as the waves become more wiggly.

For the “equivalent barotropic” (EBT) case with γ 6= 0,

Gn(r|r′) = −r′
{
In(γr)Kn(γr′) r < r′

In(γr′)Kn(γr) r > r′
(G− EBT )

and

c = q0

(
I1(γb)K1(γb)− In(γb)Kn(γb)

)
=
v(b)

b

(
1− InKn

I1K1

)
Again, the n = 1 mode simply represents a displacement of the vortex and the higher
modes precess, but at a rate slower than the vortex itself rotates at the boundary.

Planetary waves: if we let ∇2ψ = −K2ψ, and we define Q = q − f = −(K2 + γ2)ψ
then

[ψ, q] = [ψ,−(K2 + γ2)ψ + f ] = [ψ, f ] = − 1

K2 + γ2
[Q, f ]

so that
∂

∂t
Q− 1

K2 + γ2
[Q, f ] = 0

On the sphere (with ϕ the longitude)

Q = Q(ϕ+
2Ω

a2(K2 + γ2)
t)

— the crests move westward with an angular speed c = −2Ω/a2(K2 + γ2) proportional to
their “length scale” squared. For the EBT system, unlike the BTVE, this is an approximate
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statement, since we used the QG equation which is problematic at the equator. We’ll return
to that in a moment.

For the BTVE, the wave structures are

ψ = Pmn (cos θ) cosmϕ

where the Pmn are Legendre functions and

K2a2 = n(n+ 1)

Examples are
ψ = cos θ cosϕ , c = −Ω

ψ = sin 2θ cosϕ , c = −Ω/3

ψ = cos2 θ cos 2ϕ , c = −Ω/3

Beta-plane waves: again, we have ∇2ψ = −K2ψ but now find plane waves

ψ = cos(kx+ `y − kct) , k2 + `2 = K2

(although there are other solutions such as J0(Kr)). These move westward at

c = −β/(K2 + γ2)

Equatorial beta-plane waves: if we make a conformal transformation of the sphere
to a mercator map, the EBT shallow water equations become

∂

∂t
u∗ + (f + ζ)ẑ× u∗ = −∇B

∂

∂t
h+ S∇ · u∗h = 0

ζ = Sẑ · (∇× u∗)

B = gh+ S
1

2
|u∗|2

with u∗ = su, S = 1/s2, and s the scale factor s = cos θ = sech(y/a). f = 2Ω sin θ =
2Ω tanh(y/a). The operators are now all in cartesian form

(
∇ = ( ∂

∂x ,
∂
∂y , 0)

)
. Numerically,

these are no more difficult to solve than the standard SW equations (except for CFL
conditions). The equatorial beta-plane equations simplify these by keeping order 1 and
y/a but dropping higher order powers of y/a

∂

∂t
u + (f + ζ)ẑ× u = −∇B

∂

∂t
h+∇ · uh = 0

ζ = ẑ · (∇× u)

B = gh+
1

2
|u∗|2
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with f = βy and β = 2Ω/a. These equations have an exact linear dispersion relation
deriveable from (

∇2 − f2

g′H

)
∂

∂t
v + β

∂

∂x
v − 1

gH

∂3

∂t3
v = 0 (7.3)

For

v = Hn(
y

R
) exp(−1

2

y2

R2
)

where the Hn are the Hermite polynomials, we end up with

ω2

gH
− βk

ω
− k2 =

1

R2
(2n+ 1) (7.4)

and
R4 = gH/β2

The quantity
R = (gH)1/4β−1/2

is called the “equatorial deformation radius” and is the fundamental disturbance scale in
the north-south direction.

The cubic has three roots: two gravity waves with

ω2 ' gH(k2 +
2n+ 1

R2
)

and a Rossby mode with

ω ' − βk

k2 + 2n+1
R2

(7.5)

If we’re only interested in the latter, we can drop the last term in (7.3); the resulting
equation is the same as the linearized (QG) equation if we retain f = βy. Therefore
the wave propagation characteristics match (7.5). We lose the Kelvin wave and the high
frequenct (gravity wave-like) limit of the n = 0 Yanai wave, but retain the low-frequency
motions.

We shall discuss the influence of β on vortices and jets later.

Stability of a vortex
We shall go into detail on this later also; here, let’s just talk about the physics.

Suppose we have
Q = H(1 + η1 − r) + q2H(b+ η2 − r)

but with q2 being negative. (Lengths have been normalized by the inner radius and times
by the inverse of the vorticity jump from inside to outside this radius. For convenience,
consider an isolated vortex with no net circulation so that q2 = −1/b2 and the maximum
swirl velocity is at r = 1. If we perturb the inner interface, the waves will tend to propagate
clockwise but be advected counter-clockwise. Waves on the outer boundary will propagate
counter-clockwise; for appropriate scales, it may be possible for these to be nearly in sync.
But the waves on the inner interface can amplify those on the outer and vice-versa. If they
stay in the right phase relationship with each other, the perturbations will grow.
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